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ABSTRACT 

In cyber physical systems (CPSs), hazards can lead to injuries, deaths, destructions or loss of vital equipment 

or environmental damages. In these systems, software controls the behavior of mechanical and electronic 

components as well as their interactions; therefore, it plays a special role in creating system hazards and its 

safety plays a crucial role in a risk management process in cyber-physical systems. Many methods can be used 

to establish safety in software components of these systems and the software fault tree analysis (SFTA) is 

among the main methods. The main purpose of SFTA is to identify possible deficiencies in software 

requirements, design or implementation, which may result in undesirable events in software. On the other hand, 

unified modeling language (UML) is among the methods used for guaranteeing the construction of object-

oriented software. In this paper, a sequence diagram generated in the software production process and the SFTA 

are used to evaluate safety. The proposed method can play a major role in designing safe systems. The proposed 

method for designing safe software is implemented in a real CPS and due to the use of uncertain data the 

reliability of the system is calculated using SFTA-based Fuzzy. 

KEYWORDS: Software Safety, SFTA, UML, Cyber Physical Systems, Fuzzy. 

1.  INTRODUCTION 

Cyber physical systems (CPS) are integrated systems of computation, networking, and physical processes. 

Embedded computers and networks monitor and control the physical processes, with feedback loops where 

physical processes affect computations and vice versa. Examples of CPS include aerospace systems, 

transportation vehicles and intelligent highways, robotic systems, intelligent environments and spaces, etc. 

(Rajkumar & Lee, 2012; Wu et al., 2011; Oveisi & Farsi, 2018). 

The discovery of flaws has become more difficult with the increasing complexity of CPSs. Software are the 

cornerstone of CPS. The complexity of these software with millions of lines of code can cause dangerous 

consequences regarding the failure of these software. Final flaws in requirements, design, or execution of 

software can lead to unpredictable events at the integration level of software (Kim et al., 2010). Software failure 

can cause huge disasters, for example, on 4 June 1996, the Ariane 501 satellite launch failed catastrophically 

40 seconds after initiation of the flight sequence, incurring a direct cost of approximately $370 million. The 

inquiry board report (IBR), clearly identifies the proximate cause of the disaster as a software failure (Dowson, 

1997). 
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There are several ways to establish safety in hardware and software components. Fault tree analysis (FTA) 

is an approach to establish safety in software components, which can be implemented at different levels of 

software development for various purposes. FTA is a technique used in the field of safety (Bobbio et al., 2001). 

Initially, FTA was introduced in1960s with the primary goal of identifying events that could cause a system to 

reach a dangerous or insecure state (Towhidnejad et al., 2003). FTA is a powerful tool for the analysis of 

complex systems, focusing on how an event occurs and examining the hierarchy of the relevant causes. 

Therefore, FTA is often recognized as a top down approach (Oveisi & Ravanmehr, 2017; Vyas & Mittal, 2015).  

According to studies conducted by the national institute of standards and technology, the cost of software 

error in the US economy is approximately 59.5 billion US dollars per year (nearly 0.6% of GDP). It is also 

estimated that over one-third of costs (i.e. 22.2 billion US dollars) can be cut with the improvement in 

infrastructure, including the use of safety analyzes and tests that detect, anticipate, and eliminate the flaw. 

Considering the above mentioned points, the application of a method to increase the software reliability seems 

to be essential in these systems (Romani et al., 2010). 

Requirements analysis during all stages of software development plays the most important role in 

determining the safety of the whole software. If problems and errors leading to software failure are identified 

and their risks are reduced at this stage, then, the level of risk and system failure significantly decreases during 

later software development processes (Kamalrudin et al., 2018; Martins & Gorschek, 2017). A modeling 

language that is used in different phases of software development, including the requirements phase, is unified 

modeling language (UML). It also provides standardization in specifying, documenting, writing blueprint and 

visualizing the artifacts of software-intensive system under development (Kamandi et al., 2006; Hovsepyan et 

al., 2014; Paiboonkasemsut & Limpiyakorn, 2015). Several object-oriented designs use UML, which is 

standardized and commonly used by the software development community. UML applies a number of diagrams 

and views to describe software systems such as sequence diagram and use case diagram.  

In this paper, the software fault tree analysis (SFTA) is used in requirements analysis phase of software 

design, and a method has been presented to confirm it using a sequence diagram. Then, the reliability of the 

system is calculated using fuzzy analysis. 

2. Research Background 

Software safety techniques play an important role in software development and are a valuable factor in the 

life cycle. Several studies have been so far conducted in different phases of software development cycle to 

increase the safety and reliability of software. A number of safety-related works using the mentioned methods 

are briefly cited below. 

A manual four-step solution has been presented to integrate SFMEA and SFTA for the analytical process of 

use-case based requirements. In this approach, the UML use-case model is translated to a software fault tree 

for the analysis of safety based on system behavior. A text-based use-case model, known as use-case 

specifications, is used in this approach to produce the SFMEA to reduce the fault effects and results (Tiwari et 

al., 2012). Vyas & Mittal (2012) proposed another approach to extract safety requirements in a manual 

systematic form of use-case requirements. They have validated the results of their approach using a real case 

study in elevator control system. An effective method has been suggested to organize the information of fault 

tree and reuse SFTA information to produce the software fault tree (Romani et al., 2010). Four different phases 

have been designed for this method. In the first step, information of software fault tree is described by a 

semiformal method in the form of elements such as nodes, relations, target functions, and target software 

modules. Then, a knowledge base is constructed for information of software fault tree. For this purpose, 

different attributes of each node are considered. Finally, a reusable fault tree is automatically produced from 

the knowledge base using compliance between the texts with intelligent relations. This approach has been 

applied in the aerospace software systems. 
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The analysis process of requirements for software reliability is presented based on traditional safety analysis 

techniques and software system requirement specifications by Li et al. (2014). The main purpose of this process 

is to define a number of necessary requirements for software reliability. This approach is composed of four 

steps: specifying the criticality rate for each requirement, selecting requirement to be analyzed, utilizing the 

safety analysis techniques, and finally identifying the reliability attributes such as precision, compatibility, 

correctness, and maintenance. 

The rules and algorithms for automatic transfer of a risk presented by fault tree to machine state diagram are 

suggested by Kim et al. (2010). The UML state diagrams are appropriate for the discrete behavior of specific 

subsystems. The main purpose of this method is to develop an algorithm to transfer fault tree risks to UML 

status diagram for safety analysis of system behavior. Oveisi & Ravanmehr (2017), after reviewing the major 

techniques of software reliability and safety in CPS, presented a software fault tree analysis (SFTA)-based 

approach for analysis of operational use-cases (UC) in a CPS system. Extends fuzzy fault tree analysis 

methodology to petrochemical process industry in which fire, explosion and toxic gas releases are recognized 

as potential hazards by Lavasani et al. (2014), Mahmood et al. (2013) explained and reviewed fuzzy theory 

application in reliability and maintenance analysis. 

3. Proposed Approach 

Although several methods have been suggested to increase safety and guarantee in the software development 

process, less attention has been paid to the evaluation of a method based on these inaccurate data given the 

uncertainty of the events leading to failures before a software is used. Accordingly, the work flow method 

proposed to enhance the reliability and to reduce the risk is presented in Fig. 1. The issues discussed in the 

proposed method are then evaluated below. 

3.1 Work flow of proposed method 

In the proposed method, the system and software requirements are first carefully evaluated, and a sequential 

diagram is developed by checking use cases and their diagrams. Then, according to the resulting diagram, the 

SFTA will be plotted and the reliability of the system is calculated based on the fuzzy method.  

Analysis Usecase

Usecase diagram 

Review

Sequence digram Software FTA
Calculat ion of system 

reliabil ity

 
Fig. 1. Work flow of the proposed method 

 

3.2 SFTA using UML modeling 

The main objective of SFTA during software development is to identify the weak points in the specifications 

of requirements. To this end, the weak requirements are changed or other requirements are added. All the 

conditions having a direct impact on the safety of the system are identified. When requirements with safety 

considerations are identified, these requirements are tracked throughout the lifecycle development 

(Towhidnejad et al., 2003; Oliveira et al., 2016). 

During the software design, the software is displayed in the form of a number of modules in which the 

interfaces, inputs, and outputs are specified using UML, and SFTA at this stage is applied to identify modules 

(objects, methods or functions) that can directly affect the safety of the system. It should be noted that the 
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generation of fault trees for the system at requirements phase upon design selection is a more efficient choice 

than their generation at the implementation phase, since it is a heavy and hard task demanding intensive work 

during the latter phase. 

Object-Oriented Design (OOD) can be chosen as a tool to apply SFTA at the design stage. There are two 

main reasons to select OOD: 1) several recent software designs use OOD, and the software are implemented 

by OO languages, 2) Recently, many OODs use UML, which is standardized by the software community and 

is commonly applied in this community. UML uses a number of views and diagrams to describe software 

systems. 

In the next section, two sequence diagrams that are important and applicable in the software development 

process are selected, followed by the presentation of guidelines for converting the sequence diagram into a 

Fault tree. 

3.3 Sequence diagram mapping to fault tree 

1. The objects associated with the occurrence of a particular event are identified and each object can be 

displayed as an intermediate event. Each of these objects is displayed with the OR gate. 

2. The functions that create another object are base events and OR gate inputs. 

3. When an object is created by another object, the created one is shown as the base event or an 

intermediate event. 

4. If a message is sent to multiple objects or received from them, then this transfer operation can be 

displayed by forwarding a logical gate represented by a triangle. 

5. The problem of scheduling in the sequence diagram created a challenge for the development of Fault 

tree: 

When the runtime of each of the functions is assumed in sequence diagram and some objects are 

simultaneously created, these objects are the middle events of the gate inputs. 

o In one case, event A must be completed before the event B is started, and in the second case, it is not 

obligatory for the event to be completed before the event B is started. The scheduling problem is 

handled as follows: 

o For a case in which event A must start before event B is complete, we can AND schedule the result of 

event A with event B to execute this order. 

o To handle the operations to determine the sequence of two events that are simultaneously activated 

(e.g. it is necessary to activate the first event before the second event). For example, the object A 

prototypes the object B, and then both objects perform simultaneous activities. To illustrate this 

scheduling sequence, we show the object A with two sub-objects (A1, A2), where the sub-object A1 

represents the activity that should be completed after the completion of an instance of object B, and A2 

sub-object represents the beginning of activity of object A along with an instance of object B. 

 

4. Quantitative Evaluation of Fault Tree 

The quantitative probability evaluation of the final event in Fault tree is done in two ways: Boolean algebra 

and direct application of values. In the first method, Boolean algebra and the logic structure of Fault tree are 

used to combine and integrate the base events, and in the second method, the probability rules and the logical 

structure of Fault tree are used to combine and incorporate the base events. Given the advantages and 

disadvantages of the two methods mentioned by Billinton (1984), Boolean algebra method has been used in 

this paper. 
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In this method, the definition of the final event begins according to middle, incomplete, and median events, 

and each final event continues in terms of a base and incomplete event in such a way that all intermediate events 

are eliminated. 

4.1 Fuzzy analysis 

Using the developed fault tree and considering the fundamental events, fuzzy logic was used to determine 

the probability rate given that there was no information to determine the failure probability of the basic event 

(Khakzad et al., 2011; MIRI, et al., 2011; Renjith et al., 2010). These phases began by selecting a team of five 

relevant experts and ended by estimating the probability (Chen & Hwang, 1992). To estimate the probability, 

the center of gravity and Onisawa formulas were used. The implementation of fuzzy logic is described below. 

To determine the weight importance of experts, the work experience and education criteria have been used. 

The scoring method of experts is shown in Table 1. 

Table 1. Scoring based on expert characteristics 

Row Condition Classification Score 

1 

 

Experience in the specialized branch 1-2 year 

2-5 year 

>5 year 

 

1 

2 

3 

2 Education BSc 

MSc 

Ph.D. 

 

1 

2 

3 

 

3 Field of study Aerospace engineering 

Mechanical engineering 

Electrical engineering 

Computer hardware engineering 

Computer software engineering 

System reliability engineering 

Software reliability engineering 

1 

2 

3 

4 

5 

6 

7 

4 Title Expert in the relevant department 

Academic staff of the relevant 

department 

Director, Project manager 

1 

2 

 

3 

 

Table 2. Weighted scores of selected experts 

Expert 

number 

Experience 

(year) 
Education Field of study Title 

Weighted 

index 

Expert 

weight 

1 4 MSc Electrical engineering Expert 8 0.166 

2 6 MSc Mechanical engineering Expert 8 0.1666 

3 10 Ph.D. Computer software engineering Academic 13 0.27 

4 2 BSc Aerospace engineer Expert 4 0.083 

5 15 Ph.D. System reliability engineer 
Project 

manager 
15 0.312 

The weights of experts evaluation criteria were determined after specifying these criteria in the previous 

phase. The final weight score of each expert is achieved by dividing the sum total of obtained scores by the 

total scores of all the experts participating in the study. The weight score of each expert based on the criteria 

set out in the previous stage is shown in Table 2. 
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Linguistic variables have been used to quantify expert opinions or to determine the weights of their views 

on basic events. The five linguistic variables include very low, low, moderate, high, and very high, which are 

summarized as VL, L, M, H, and VH. To fuzzify this section, a trapezoidal fuzzy number has been used. The 

corresponding membership functions are shown in Eq. (1). 
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The weights of linguistic terms of experts whose views have been used in quantification are shown in Table 

3. 

Table 3.Weight of linguistic variables in quantifying the views of experts 
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Weight of linguistic terms Language variable 

0.2 0.1 0 0 Very low(VL) 

0.4 0.25 0.25 0.1 Low(L) 

0.7 0.5 0.5 0.3 Moderate (M) 

0.9 0.45 0.75 0.6 High (H) 

1 1 0.9 0.8 Very High (VH) 

4.1.1. Expert consensus 

Although there are different viewpoints on the probability of basic events, we must integrate the views into one 

view. For this purpose, there are several ways to integrate fuzzy numbers. One of the methods presented by 

Clemen & Winkler (1999) is as follows: to reach consensus among experts, the weight of each expert is 

multiplied by their linguistic variables according to the following Eq. (2): 

1

( 1,..., )
m

i j ij
j

M W A i n


                                                                                                                                               (2) 

where Aij is the linguistic variable in relation to each basic event of i by the expert j, Wj weight of j expert, m 

number of base events, n number of experts, and Mi fuzzy number of experts consensus in relation to each basic 

event i. 

4.1.2. Defuzzification 

Defuzzification of fuzzy numbers is an important method for decision making in fuzzy environments. In 

this research, the center of gravity method has been selected for defuzzification, which is the most accurate 

defuzzification method developed by Sugeno in 1985 (Nguyen, 1999). Defuzzification of the trapezoidal fuzzy 

number A= (a1, a2,…, a4) is obtained using the following formula (Romani et al., 2010): 
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                                        (3) 

The number obtained from the previous step in relation to each basic event is equivalent to expert opinion 

and is still possible. At this stage, these numbers are defuzzified using the center of gravity model Eq. (2) of 

the trapezoidal formula. 

4.1.3 Conversion of possibility formula to probability 

The number obtained from the defuzzification step is still possible form. Since the fault tree accepts 

probability, the number achieved from the previous step should be converted from possibility to probability. 

For this purpose, the formulas presented by Onisawa are used. 

1

3
1

         CFP 0 1
    ; *2.30110

0              CFP=0

k CFP
FP k

CFP


   

   
 



                                                                                      (4)                                                     

 

In this equation, FP is the probability rate of each basic event and CFP is the possibility number derived 

from the defuzzification stage. 
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5.   Case Study 

We applied the results of our approach to a part of a real CPS known as command issuing set, the architecture 

of which is shown in Fig. 2. 
 

FPGA

Analog Pressure 

Sensor

Digital Pressure 

Sensor

MICRO

Internal Memory

Relay

Mass & Spring

Umbilical

Noise

Motor

Reserve Parachute

Main Parachute

GPS

Motor Pressure SensorBattery

External Memory For 

Flying Computer

 
Fig. 2. General architecture of data and command unit 

 

The most important goal of data and command unit is the timely release of commands for separation of 

nose, engine, and parachutes based on the simulated time and height during a sounding rocket flight. To begin 

working, this section needs to detect the start of movement, and in fact, it must receive the start signal. The start 

signal, which results from simultaneous cut of cord and compression of mass and spring switch, is a command 

to start the operations of the two system processors, which use data from pressure sensors and timeline of their 

internal timers to perform their operations. 
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Fig. 3. Sequence diagram of data and command unit 
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5.1 Evaluation of the designed software 

The data and command unit is one of the most important subsystems of space and aerial systems. As 

discussed earlier, since the use of code-level SFTAs is a heavy and difficult task, it has been attempted to 

provide analytics to establish software safety from early steps of the software life cycle. 

Our focus in this paper is to analyze the design of software used in data and command unit. Accordingly, 

after examining the use case diagram and the existing documentation, sequence diagram was generally achieved 

for the entire software suite as well as for all subsystems by means of the use case profile table, and the sequence 

diagram of the whole set is presented in Fig. 3. After analyzing the existing sequence diagram and according 

to the presented SFTA method, the SFTA plot (shown in Fig. 4) and then its fuzzy analysis are obtained. 

5.2. Fuzzy analysis 

In the table below, the failure probability (FP) calculation results related to each base event for the failure 

risk of DCU subsystem software are shown, and in Table 5, the final and middle probability rates for the failure 

risk of the mentioned items are presented. 

Table 4. Sequence diagram of data and command unit 

Failure 

probability 

Event name Event symbol 

0.0043 Fault in starting a subsystem function X1 

0.0065 Fault in time decision1 X2 

0.0042 Fault in pressure decision1 X3 

0.0047 Fault in pressure decision2 X4 

0.0065 Fault in time decision2 X5 

0.0063 Fault in time decision3 X6 

0.0061 Fault in time decision4 X7 

 

Table 5. SFTA of data and command unit  

Event rate Event name Event symbol 

0.0782 Fault in DCU T 

0.058 Fault in starting of  GPS I1 

0.0519 Fault in main parachute relay startup by FPGA I2 

0.0456 Fault in reserve parachute relay I3 

0.0391 Fault in determining reliable sensor I4 

0.0344 Fault in height detection I5 

0.0108 Fault in separation of the noise I6 

0.0108 Fault in separation of the motor I7 

0.0151 Fault in check pressure analog sensor data I8 

0.0151 Fault in check pressure digital sensor I9 

0.0086 Fault  in stopping engine pressure sensor I10 

0.0043 Fault in time decision I11 

0.0043 Fault in pressure decision I12 

0.0043 Fault in starting micro I13 

As shown in Table 5, using expert opinions and fuzzy analysis, the system evaluation was done as follows. 

The total system failure rate was estimated 0.0782 using the Boolean algebra, and thus the reliability of the 

software subsystem was 0.9218. 

6. Conclusion 

Nowadays, the detection of failure is more difficult as the CPSs become more and more complex. The 

software with millions of lines of code play a key role in the failure or success of a system; therefore, the goal 
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is a safety software design from the very beginning of the software development cycle. Therefore, in this paper, 

safety was examined in the analysis phase of requirements using the sequence diagram. Then, a method was 

presented to generate SFTA from the sequence diagram. Using Delphi technique, experts’ opinions, and fuzzy 

analysis, the reliability of the software subsystem has been calculated. In future research, we examine the 

reliability by developing a software using UML and converting it into a state method. 
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