

AN EFFICIENT PATH PLANNING METHOD BASED ON THE CURVATURE

OF CONTOURS FOR DRAWING ROBOTS

Majid Abedinzadeh Shahri1,* and Seyed Vahid Daei Niaki1

1 Research Center, FANAP Co., Tehran, Iran.

ABSTRACT

 Creating artistic robotic systems is among the most attractive activities that have recently become more

interesting. For drawing robots, a contour graphic can be presented as a Raster graphic or a Vector graphic.

Because vector graphics can create continuous and smooth strokes, vector graphics are more appropriate than

raster graphics for drawing robots. Accordingly, in this paper, we propose a methodology for the smooth path

planning of drawing robots. To achieve this purpose, in this work, firstly, we propose an approach for sorting

the points of a raster graphic into several strokes. Secondly, a novel approach is proposed to identify the main

points of the raster graphic and use them for Raster-To-Vector conversion. We use the obtained vector graphics

for path planning. Finally, the obtained trajectories are compared to each other on a simulated drawing robot to

show how a Raster-To-Vector approach affects the performance of a drawing robot. The results validate the

applicability of the proposed approach.

Keywords: Drawing Robot, Path Planning Methods, Counter Drawing, Raster to Vector Conversion.

1. INTRODUCTION

Writing and drawing easily performed by humans, are two key activities that make robots look more like

humans. Therefore, robotic drawing is becoming a popular human-robot interactive activity that is both

attractive and fun for the public people (Wang et al., 2020; Gao, et al., 2020). The early history of the creation

of drawing machines can be attributed to the works of art by Jean Tinguely and Harold Cohens Aron

(McCorduck, 1991).

Generally, a robotic drawing system is usually a special machine that creates pieces of artwork either completely

or partially (Coelho, A., 2018; Adamik et al., 2022). In a robotic drawing system, a robotic arm (Song, Lee, and

Kim, 2018) or a humanoid robot (Calinon, Epiney, & Billard, 2005) is used in an interactive environment to

draw a picture of images in front of human users. Due to the interactivity and entertainment, drawing systems

applications have been extended in a wide range of scenarios such as children's education (Hood, Lemaignan,

& Dillenbourg, 2015), psychological therapy (Cooney and Menezes, 2018), and social entertainment (Jean-

Pierre & Sa¨ıd, 2012). Although these robotic systems may have been independent and autonomous components

* Corresponding Author, Email: m.abedinzadeh@ut.ac.ir

RECEIVED: 19 SEPTEMBER 2022; ACCEPTED: 06 OCTOBER 2022; PUBLISHED ONLINE: 10 OCTOBER 2022
© 2022 FANAP RESEARCH CENTER. ALL RIGHTS RESERVED.

JOURNAL OF APPLIED INTELLIGENT SYSTEMS & INFORMATION SCIENCES

VOL. 3, ISSUE 1, PP. 36-45, OCTOBER 2022.
Available at: https://journal.research.fanap.com/

DOI: https://doi.org/10.22034/JAISIS.2022.362813.1048

mailto:m.abedinzadeh@ut.ac.ir
https://doi.org/10.22034/JAISIS.2022.362813.1048

Abedinzadeh Shahri & Daei Niaki (2022) 37

and their output may be similar to the works of human artists, developing a creative machine is still an open

problem (Jeon, 2017; Yu & Chen, 2018).

Researchers have spent much effort in developing artistic robots that can draw sketch portraits (Gao et al., 2019),

color images (Luo, Hong, & Chung, 2016), watercolors (Scalera et al., 2019), painting using the palette knife

technique (Beltramello, 2020), etc. While It usually takes a robot several hours to draw color images (Scalera

et al., 2019), drawing a portrait which mainly includes a set of lines usually takes a short period. Portrait drawing

robots thus allow active interactions between robots and users. In this work, in an attempt to have a portrait

drawn in a short time, we focus only on drawing contours.

For a robot to draw the contours of a picture, the continuous contours of the desired picture need to be presented

as digital data to be received by the robot. This digitalization process usually adds noise to the contours' features.

On the other hand, after the robot planned its motion according to the received digital data, the robot should

draw the contours as continuous lines on a sheet.

Nevertheless, a digitalized graphic can be presented in two frameworks (Orzan et al., 2008): raster graphics and

vector graphics. For the raster graphics, the continuous lines of contours are presented as discrete points (Hsu,

2017). For a drawing robot, this presentation results in repetitive go-and-stop motions that would act jerky. On

the other hand, vector graphics present lines with continuous mathematics formulas. Because vector graphics

can create continuous and smooth strokes, for a drawing robot, it is preferred to receive a digitalized vector

graphic (instead of a digitalized raster graphic).

However, usually, a digitalized graphic is received as a raster graphic. Accordingly, we need an algorithm to

convert a raster graphic to a vector one. In computer science, this process is called Raster-To-Vector conversion

(Levachkine, 2003; Liu, 2017). Hence, this paper focuses on algorithm design for Raster-To-Vector conversion.

Nevertheless, as mentioned before, one of the main applications of drawing robots is entertainment. In other

words, this type of robot (drawing robots) is very popular among toy designers. For a robotic toy to have more

lifetime, energy efficiency is essential. Indeed, low-power design is a major desired feature for a drawing robot

toy. Now, the question raises here is how a Raster-To-Vector approach affects the efficiency of a drawing robot.

To address this challenge, in this paper, firstly, we propose an approach for sorting the points of a raster graphic

into several strokes. Secondly, as the main contribution of this work, a novel approach is proposed to identify

the main points of the raster graphic. In this approach, we consider the curvature of contours as a guideline to

exclude the points with less importance. The remained points are used for Raster-To-Vector conversion and

path planning. Finally, the proposed approach is compared to a conventional one on a simulated robot to show

how a Raster-To-Vector approach affects the performance of a drawing robot.

The rest of the paper is structured as follows; Section 2 states the problem of interest and presents the different

approaches for path planning. Then, in Section 3, we introduce the case study in the simulated environment.

Also, in this section, we present the obtained simulation results. The paper ends with discussions and

conclusions in Section 4 and Section 5, respectively.

2. PROBLEM STATEMENT & PATH PLANNING METHODS

For drawing counters of a picture, consider a robot that received the raster contours’ points. The problem

addressed here is to design an efficient path planning algorithm for the robot’s motion to obtain the trajectories

of desired contours. Without loss of generality, we assume the desired contours points are presented in an M×M

matrix (hereinafter this matrix is named ConMat) as illustrated in Fig. 1. In this figure, the filled cells present

the contours’ points.

38 Journal of Applied Intelligent Systems & Information Sciences

Fig.1: An example of contours’ points on a matrix. In this figure, the cells related to the points are filled.

Generally, for beginning to draw the contours with a start point, we need an approach for sorting the contours’

points. Accordingly, in the following, we introduce an approach to order the points in several strokes (each

stroke includes several ordered points) to form the desired contours.

2.1. Sorting method

For this purpose, we compute a neighborhood matrix for each cell of ConMat. Each neighborhood matrix has 9

cells (3×3) and the central cell of each neighborhood matrix is located on a cell of ConMat. Accordingly, if each

cell of the neighborhood matrix is located on a filled cell of ConMat, that cell takes value 1 (otherwise, it takes

value 0), see Fig. 2. Computing these neighborhood matrices for all cells of ConMat, the neighborhood number

of each cell is obtained by the sum of the values of its neighborhood matrix.

According to the neighborhood numbers, the contours’ points are sorted and divided into several strokes. For

this, the filled cell with a minimum neighborhood number is chosen as the first point of the first stroke.

Thereafter, if that cell has at least an adjacent filled cell (according to the neighborhood matrix of the chosen

cell), the adjacent cell with the maximum neighborhood number is chosen as the next point of that stroke. This

procedure is repeated until the last chosen cell has no adjacent filled cell. In this case, if there exists at least a

filled cell among the other cells, the presented procedure is repeated for the next stroke. Accordingly, the points

of strokes are obtained (according to the location of chosen cells). To better understand this approach, see

Algorithm I in Table 1.

Fig. 2: An example of a neighborhood matrix: The selected cell for computing the neighborhood matrix is

highlighted in the left subfigure. Also, the related neighborhood matrix is computed in the right subfigure.

Abedinzadeh Shahri & Daei Niaki (2022) 39

Table 1: Sorting Contours’ Points Algorithm

The algorithm I: Sorting Contours’ Points

Input: initial ConMat according to the given raster points

Output: The strokes of the contours presented in ConMat

1

2

3

4

5

6

7

8

9

10

11

12

13

Compute the neighborhood matrices for all cells in ConMat;

While (exists at least a filled cell in ConMat)

Compute the neighborhood numbers for all cells in ConMat;

Create a new stroke and open that;

Choose the filled cell with a minimum neighborhood number;

Insert the location of the chosen cell in the stroke and make that cell blank in ConMat;

While (the last chosen cell has at least an adjacent filled cell)

Choose the adjacent cell with the maximum neighborhood number;

Insert the location of the chosen cell in the stroke and make that cell blank in ConMat;

Update the neighborhood matrices for all cells in ConMat;

End While

Close the stroke;

End While

For each obtained stroke, we need a path function to draw that. However, raster graphics (due to the

digitalization process) may include noisy points. Hence, considering all raster points for path planning may be

an inefficient solution. In the following, we introduce an approach to overcome this problem.

2.2. Separating method

Because the contours’ points include noisy data, we propose an approach to remove the points which are less

important for the path planning procedure. For this purpose, we introduce the stroke curvature as a criterion for

labeling P as an important one or not: 𝐶(.) = 𝑆𝑡𝑟𝑜𝑘𝑒𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒(.). For this, C is computed numerically for

all points of each stroke. Thereafter, if for a point (e.g., P) we have: C(P) > µ, that point is labeled as an important

one. Indeed, if the chosen point has a large curvature, that is labeled as an important one. Note that, if µ is

chosen with a small value, most of the points are considered important points, and on the contrary, if one chooses

a large value for this parameter, most of the points are labeled as less important.

Once the main raster points are obtained, we use them for path planning. In the following, we introduce three

approaches for Raster-To-Vector conversion and path planning.

2.3. Path planning methods

Now, we need an approach to present the points of each stroke (see Fig. 3a as a sample) in mathematical forms.

Indeed, for a stroke (e.g., the ith stroke), we need a path function as: 𝑃𝑖 = 𝑓𝑖(𝑡), that converts the drawing time

(notated as t) to the stroke position (i.e., Pi). Pi = [Pi (1) Pi (2)] is a vector with two components (to present the

point location on the X and Y axes). To achieve this purpose, we introduce three interpolation approaches to

convert raster points to vector presentation.

1- Dense piecewise: Although we proposed an approach to remove the points with less importance,

conventionally, all points are considered for interpolation. Hence, as a conventional method, we connect

every two adjacent points of each stroke with two piecewise linear functions (one for the X and the

other for the Y axes). Also, to control the drawing speed of the stroke, we consider the length of the

traced path (for the jth point of the ith stroke notated as si,j) as the input of piecewise linear functions:

𝑠𝑖,𝑗 = {

0 𝑗 = 1

∑√(𝑃𝑖,𝑘(1) − 𝑃𝑖,𝑘−1(1))
2
+ (𝑃𝑖,𝑘(2) − 𝑃𝑖,𝑘−1(2))

2
𝑗

𝑘=1

𝑜.𝑤.
 (1)

where ni is the number of points in the ith stroke and Pi,j presents the location of the jth point of that stroke

the stroke with ni points is formalized with 2ni-2 piecewise linear functions as:

40 Journal of Applied Intelligent Systems & Information Sciences

𝑃𝑖(1) = 𝐹𝑖1,1(𝑠) = {

ℎ𝑖1,1,1(𝑠)

ℎ𝑖1,1,2(𝑠)

0 ≤ 𝑠 < 𝑠𝑖,2
𝑠𝑖,2 ≤ 𝑠 < 𝑠𝑖,3

…
ℎ𝑖1,1,𝑛𝑗−1(𝑠)

…
𝑠𝑖,𝑛𝑗−1 ≤ 𝑠 < 𝑠𝑖,𝑛𝑗

𝑃𝑖(2) = 𝐹𝑖1,2(𝑠) = {

ℎ𝑖1,2,1(𝑠)

ℎ𝑖1,2,2(𝑠)

0 ≤ 𝑠 < 𝑠𝑖,2
𝑠𝑖,2 ≤ 𝑠 < 𝑠𝑖,3

…
ℎ𝑖1,2,𝑛𝑗−1(𝑠)

…
𝑠𝑖,𝑛𝑗−1 ≤ 𝑠 < 𝑠𝑖,𝑛𝑗

(2)

where hi1,1,. and hi1,2,. present the linear functions fitted with the stroke points for the X and Y axes,

respectively. See Fig. 3b as an example of this approach.

2- Sparse piecewise: In this approach, after choosing the points with the most important points from each

stroke (by the approach presented in the “Separating method”), we connect these points with piecewise-

linear functions. Similar to the latter method, the length of the traced path in the chosen points is

considered as the input of piecewise linear functions. It is worth mentioning that to compute the length

of the traced path for the chosen points, the points with less importance should be considered for the

summation operator in Eq. 1. Also, the formulation of this approach is similar to Eq. 2, except this only

includes the linear functions between the main points. Fig. 3c tried to illustrate an example of this

approach.

3- Sparse spline: This approach is similar to the previous one in all cases, except that this approach uses

spline functions between every two main points, see Fig. 3d.

(a)

(b)

(c)

(d)

Fig. 3: Dense-To-Vector methods: The filled cells in (a) presents the stroke points. (b), (c), and (d) are vector

presentations of the desired stroke obtained by Dense Piecewise, Sparse Piecewise, and Sparse Spline

methods, respectively.

Now, for each stroke, we have three mathematical functions: Pi1=Fi1(s), Pi2=Fi2(s), and Pi3=Fi3(s), where Pi1,

Pi2, and Pi3 denote the stroke point measured by Dense Piecewise, Sparse Piecewise, and Sparse Spline methods,

respectively. Also, Fi1, Fi2, and Fi3 are the designed stroke trajectories’ functions by Dense Piecewise, Sparse

Piecewise, and Sparse Spline methods, respectively.

It should be mentioned here that for drawing a stroke with respect to the time, we need to define the desired

tracing length as a function of the time as s = g(t), where g denotes the tracing function and t denotes the traced

time.

3. CASE STUDY & SIMULATION RESULTS

In this section, we demonstrate the applicability of the proposed approach by simulating a drawing robot. The

considered robot includes a pen (for drawing on a sheet), a manipulator (for horizontal movements of the pen),

and a body (for vertical movement of the manipulator), see Fig. 4. This robot has 3-DoFs (two ones for

horizontal movements and the other one for vertical movement). The horizontal movement of the pen is

achieved by two revolute actuators on the serial manipulator. Also, a linear actuator is used for vertical

movement.

Abedinzadeh Shahri & Daei Niaki (2022) 41

Fig. 4: The drawing robot includes a body, a manipulator (with two series links), and a pen.

We consider a mass of 100 grams for both links. The pen simulates a mass of 10 grams. Accordingly, all

movable parts weigh 410 grams. All robot joints have a small viscous friction torque with a coefficient of

0.00001 N.m/rad.s. The friction force between the pen and sheet is simulated by a Coulomb friction force with

a magnitude of 0.001 N.

The desired contours with 1498 points are illustrated in a matrix with 255×255 cells, as shown in Fig. 5. The

proposed method for sorting the contours’ points resulted in 14 strokes. For each stroke, we design three

trajectories according to Dense Piecewise, Sparse Piecewise, and Sparse Spline approaches. For Sparse

Piecewise and Sparse Spline methods, we consider µ=0.09. Also, for each case, we define the tracing function

as g(t)=0.1t. Accordingly, we have a constant tracing speed (0.1 m/s) for all trajectories.

Fig. 5: The desired contours

As mentioned before the designed strokes’ trajectories present the points' location on ConMat. Hence, we should

map the strokes’ points’ location on the robot workspace. For this purpose, we define the drawing workspace

as a square with a width and a height of 12×12 centimeters in the front of the robot’s body. Both links of the

robot have a length of 0.1 m. Accordingly, we use the inverse kinematics relationships of the manipulator to

find the appropriate angles of revolute actuators to reach a target point in the drawing workspace.

42 Journal of Applied Intelligent Systems & Information Sciences

After drawing each stroke, the manipulator is stopped and moved up. Then, it begins to move to the initial

position of the next stroke with a determined speed (4.5 cm/s). Thereafter, the manipulator is moved down to

begin drawing the next stroke. For each vertical movement, we consider a delay time (0.1 seconds).

We have implemented the robot model in the MATLAB SimMechanics toolbox. In the simulations, we assume

all actuators have perfect controllers. This means that in the simulation, we assume the trajectory tracking error

equals zero.

According to the mentioned conditions, we simulated the drawing task for the three designed trajectories. The

simulation results showed that the robot with the first method (Fi1 with 1497 piecewise linear functions and an

overall length of 0.84 m) consumed 0.9 joules of energy in 8.42 seconds. Also, the drawn contours obtained

with this method are shown in Fig. 6a. The robot with the second method (Fi2 with 72 piecewise linear functions

and an overall length of 0.77 m) consumed 0.14 joules of energy in 7.69 seconds. The contours drawn with this

method are illustrated in Fig. 6b. Also, the third method (Fi3 with 72 spline functions and an overall length of

0.78 m) resulted in 0.22 energy consumption in 7.8 seconds. The contours drawn with this method are illustrated

in Fig. 6c.

4. DISCUSSIONS

According to the obtained results, we can conclude that the robot with the first method (Dense Piecewise) needs

the highest energy to draw the desired contour. Meanwhile, because the digital raster graphic includes noise,

the obtained drawn contours include wave-like noise, too. Indeed, these undesirable movements, which are the

result of noisy data, increased the energy consumption of the drawing task. Hence, considering all raster points

for path planning is an inefficient approach for such a case. Especially, for raster graphics with significant errors.

Accordingly, in the second approach (Sparse Piecewise), we used the proposed method to remove the less

important points to exclude parts of noisy data. The results indicate that the second approach has the least energy

consumption. However, because the remained points are connected with piecewise linear functions, the obtained

drawn lines are very simplified in comparison to the desired contours. In other words, the fitted functions are

not so flexible to yield the desired contours.

To address the mentioned problem, in the third approach (Sparse Spline), we used spline functions to connect

the main points. The results showed this approach with a little more energy consumption than the second one,

achieved the most acceptable curvatures.

Needless to say, each method has its advantages and disadvantages. The main advantage of the Dense Piecewise

approach is considering all given raster points (without neglecting any data) in the path planning procedure.

This is good for cases with negligible noise. On the other hand, this feature may be a disadvantage for significant

noisy data. Besides, this needs more time to obtain the output.

The advantage of Sparse Piecewise, in addition to excluding some noisy data, is its simplicity and speed. In

other words, for cases where fast drawing is desirable, this approach can be an ideal candidate. However, its

disadvantage is that it is not sufficiently smooth to obtain curvy lines.

Nevertheless, the Sparse Spline stands between Dense Piecewise and Sparse Piecewise. Indeed, although this

approach includes less noisy data than Dence Piecewise, its output has proper flexibility to achieve curvy

contours. Hence, we think the proposed approach is a simple, fast, and efficient approach for path planning to

draw contours. However, the disadvantage of this approach is excluding parts of given data, which may result

in undesirable contours in cases with negligible noisy data.

Abedinzadeh Shahri & Daei Niaki (2022) 43

(a)

(b)

(c)

Fig. 6: The drawn contours in the simulation: (a), (b), and (c) presents the obtained contours by Dense

Piecewise, Sparse Piecewise, and Sparse Spline methods, respectively.

44 Journal of Applied Intelligent Systems & Information Sciences

5. CONCLUSIONS

For path planning to draw contours, this work firstly proposed a method to sort the points of desired contours

in several strokes. Secondly, a novel method was proposed to identify the main points of each stroke.

Accordingly, to show the applicability of the proposed method, three approaches were introduced for Raster-

To-Vector conversion: Dense Piecewise, Sparse Piecewise, and Sparse Spline. Finally, considering energy

efficiency as a desired feature for drawing robots, in the simulations, we studied the effect of using the proposed

approach on the path planning of a simulated drawing robot. The simulation results showed the superiority of

the proposed method in comparison with a conventional method.

In this work, we consider the same tracing function for comparing the presented approaches. Nonetheless,

designing a proper tracing function may affect the energy efficiency of the robot. This will be studied in our

future works. Also, in future works, we will design and implement a drawing robot in an attempt to study the

proposed approaches on a real robot.

REFERENCES

Adamik, M., Goga, J., Pavlovicova, J., Babinec, A., & Sekaj, I. (2022). Fast robotic pencil drawing based on image evolution by means

of genetic algorithm. Robotics and Autonomous Systems, 148, 103912.

Beltramello, A., Scalera, L., Seriani, S., & Gallina, P. (2020). Artistic robotic painting using the palette knife technique. Robotics, 9(1),

15.

Calinon, S., Epiney, J., & Billard, A. (2005, December). A humanoid robot drawing human portraits. In 5th IEEE-RAS International

Conference on Humanoid Robots, 2005. (pp. 161-166). IEEE.

Coelho, A., Branco, P., & Moura, J. M. (2018, November). A brief overview on the evolution of drawing machines. In International

Conference on Intelligent Technologies for Interactive Entertainment (pp. 14-24). Springer, Cham.

Cooney, M. D., & Menezes, M. L. R. (2018). Design for an art therapy robot: An explorative review of the theoretical foundations for

engaging in emotional and creative painting with a robot. Multimodal Technologies and Interaction, 2(3), 52.

Gao, Q., Chen, H., Yu, R., Yang, J., & Duan, X. (2019, February). A robot portraits pencil sketching algorithm based on face component

and texture segmentation. In 2019 IEEE International Conference on Industrial Technology (ICIT) (pp. 48-53). IEEE.

Gao, F., Zhu, J., Yu, Z., Li, P., & Wang, T. (2020, October). Making robots draw a vivid portrait in two minutes. In 2020 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (pp. 9585-9591). IEEE.

Hood, D., Lemaignan, S., & Dillenbourg, P. (2015, March). When children teach a robot to write: An autonomous teachable humanoid

which uses simulated handwriting. In Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot

Interaction (pp. 83-90).

Hsu, C. F., Kao, W. H., Chen, W. Y., & Wong, K. Y. (2017, June). Motion planning and control of a picture-based drawing robot system.

In 2017 Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing

and Intelligent Systems (IFSA-SCIS) (pp. 1-5). IEEE.

Jean-Pierre, G., & Saïd, Z. (2012, March). The artist robot: A robot drawing like a human artist. In 2012 IEEE International Conference

on Industrial Technology (pp. 486-491). IEEE.

Jeon, M. (2017). Robotic arts: Current practices, potentials, and implications. Multimodal Technologies and Interaction, 1(2), 5.

Levachkine, S. (2003, July). Raster to vector conversion of color cartographic maps. In International Workshop on Graphics

Recognition (pp. 50-62). Springer, Berlin, Heidelberg.

Liu, C., Wu, J., Kohli, P., & Furukawa, Y. (2017). Raster-to-vector: Revisiting floorplan transformation. In Proceedings of the IEEE

International Conference on Computer Vision (pp. 2195-2203).

Luo, R. C., Hong, M. J., & Chung, P. C. (2016, October). Robot artist for colorful picture painting with visual control system. In 2016

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2998-3003). IEEE.

McCorduck, P. (1991). Aaron's code: meta-art, artificial intelligence, and the work of Harold Cohen. Macmillan.

Orzan, A., Bousseau, A., Winnemöller, H., Barla, P., Thollot, J., & Salesin, D. (2008). Diffusion curves: a vector representation for

smooth-shaded images. ACM Transactions on Graphics (TOG), 27(3), 1-8.

Abedinzadeh Shahri & Daei Niaki (2022) 45

Scalera, L., Seriani, S., Gasparetto, A., & Gallina, P. (2019). Watercolour robotic painting: a novel automatic system for artistic

rendering. Journal of Intelligent & Robotic Systems, 95(3), 871-886.

Song, D., Lee, T., & Kim, Y. J. (2018, May). Artistic pen drawing on an arbitrary surface using an impedance-controlled robot. In 2018

IEEE International Conference on Robotics and Automation (ICRA) (pp. 4085-4090). IEEE.

Yu, D., & Chen, H. (2018, July). A review of robotic drawing. In 2018 IEEE 8th Annual International Conference on CYBER

Technology in Automation, Control, and Intelligent Systems (CYBER) (pp. 334-338). IEEE.

Wang, T., Toh, W. Q., Zhang, H., Sui, X., Li, S., Liu, Y., & Jing, W. (2020, April). RoboCoDraw: robotic avatar drawing with GAN-

based style transfer and time-efficient path optimization. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34,

No. 06, pp. 10402-10409).

