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ABSTRACT 

 Creating artistic robotic systems is among the most attractive activities that have recently become more 

interesting. For drawing robots, a contour graphic can be presented as a Raster graphic or a Vector graphic. 

Because vector graphics can create continuous and smooth strokes, vector graphics are more appropriate than 

raster graphics for drawing robots. Accordingly, in this paper, we propose a methodology for the smooth path 

planning of drawing robots. To achieve this purpose, in this work, firstly, we propose an approach for sorting 

the points of a raster graphic into several strokes. Secondly, a novel approach is proposed to identify the main 

points of the raster graphic and use them for Raster-To-Vector conversion. We use the obtained vector graphics 

for path planning. Finally, the obtained trajectories are compared to each other on a simulated drawing robot to 

show how a Raster-To-Vector approach affects the performance of a drawing robot. The results validate the 

applicability of the proposed approach. 

Keywords: Drawing Robot, Path Planning Methods, Counter Drawing, Raster to Vector Conversion. 

1. INTRODUCTION  

Writing and drawing easily performed by humans, are two key activities that make robots look more like 

humans. Therefore, robotic drawing is becoming a popular human-robot interactive activity that is both 

attractive and fun for the public people (Wang et al., 2020; Gao, et al., 2020). The early history of the creation 

of drawing machines can be attributed to the works of art by Jean Tinguely and Harold Cohens Aron 

(McCorduck, 1991).  

Generally, a robotic drawing system is usually a special machine that creates pieces of artwork either completely 

or partially (Coelho, A., 2018; Adamik et al., 2022). In a robotic drawing system, a robotic arm (Song, Lee, and 

Kim, 2018) or a humanoid robot (Calinon, Epiney, & Billard, 2005) is used in an interactive environment to 

draw a picture of images in front of human users. Due to the interactivity and entertainment, drawing systems 

applications have been extended in a wide range of scenarios such as children's education (Hood, Lemaignan, 

& Dillenbourg, 2015), psychological therapy (Cooney and Menezes, 2018), and social entertainment (Jean-

Pierre & Sa¨ıd, 2012). Although these robotic systems may have been independent and autonomous components 
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and their output may be similar to the works of human artists, developing a creative machine is still an open 

problem (Jeon, 2017; Yu & Chen, 2018). 

Researchers have spent much effort in developing artistic robots that can draw sketch portraits (Gao et al., 2019), 

color images (Luo, Hong, & Chung, 2016), watercolors (Scalera et al., 2019), painting using the palette knife 

technique (Beltramello, 2020), etc. While It usually takes a robot several hours to draw color images (Scalera 

et al., 2019), drawing a portrait which mainly includes a set of lines usually takes a short period. Portrait drawing 

robots thus allow active interactions between robots and users. In this work, in an attempt to have a portrait 

drawn in a short time, we focus only on drawing contours. 

For a robot to draw the contours of a picture, the continuous contours of the desired picture need to be presented 

as digital data to be received by the robot. This digitalization process usually adds noise to the contours' features. 

On the other hand, after the robot planned its motion according to the received digital data, the robot should 

draw the contours as continuous lines on a sheet. 

Nevertheless, a digitalized graphic can be presented in two frameworks (Orzan et al., 2008): raster graphics and 

vector graphics. For the raster graphics, the continuous lines of contours are presented as discrete points (Hsu, 

2017). For a drawing robot, this presentation results in repetitive go-and-stop motions that would act jerky. On 

the other hand, vector graphics present lines with continuous mathematics formulas. Because vector graphics 

can create continuous and smooth strokes, for a drawing robot, it is preferred to receive a digitalized vector 

graphic (instead of a digitalized raster graphic).  

However, usually, a digitalized graphic is received as a raster graphic. Accordingly, we need an algorithm to 

convert a raster graphic to a vector one. In computer science, this process is called Raster-To-Vector conversion 

(Levachkine, 2003; Liu, 2017). Hence, this paper focuses on algorithm design for Raster-To-Vector conversion. 

Nevertheless, as mentioned before, one of the main applications of drawing robots is entertainment. In other 

words, this type of robot (drawing robots) is very popular among toy designers. For a robotic toy to have more 

lifetime, energy efficiency is essential. Indeed, low-power design is a major desired feature for a drawing robot 

toy. Now, the question raises here is how a Raster-To-Vector approach affects the efficiency of a drawing robot.  

To address this challenge, in this paper, firstly, we propose an approach for sorting the points of a raster graphic 

into several strokes. Secondly, as the main contribution of this work, a novel approach is proposed to identify 

the main points of the raster graphic. In this approach, we consider the curvature of contours as a guideline to 

exclude the points with less importance. The remained points are used for Raster-To-Vector conversion and 

path planning. Finally, the proposed approach is compared to a conventional one on a simulated robot to show 

how a Raster-To-Vector approach affects the performance of a drawing robot. 

The rest of the paper is structured as follows; Section 2 states the problem of interest and presents the different 

approaches for path planning. Then, in Section 3, we introduce the case study in the simulated environment. 

Also, in this section, we present the obtained simulation results. The paper ends with discussions and 

conclusions in Section 4 and Section 5, respectively. 

2. PROBLEM STATEMENT & PATH PLANNING METHODS  

For drawing counters of a picture, consider a robot that received the raster contours’ points. The problem 

addressed here is to design an efficient path planning algorithm for the robot’s motion to obtain the trajectories 

of desired contours. Without loss of generality, we assume the desired contours points are presented in an M×M 

matrix (hereinafter this matrix is named ConMat) as illustrated in Fig. 1. In this figure, the filled cells present 

the contours’ points. 
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Fig.1: An example of contours’ points on a matrix. In this figure, the cells related to the points are filled.  

Generally, for beginning to draw the contours with a start point, we need an approach for sorting the contours’ 

points. Accordingly, in the following, we introduce an approach to order the points in several strokes (each 

stroke includes several ordered points) to form the desired contours.  

2.1. Sorting method 

For this purpose, we compute a neighborhood matrix for each cell of ConMat. Each neighborhood matrix has 9 

cells (3×3) and the central cell of each neighborhood matrix is located on a cell of ConMat. Accordingly, if each 

cell of the neighborhood matrix is located on a filled cell of ConMat, that cell takes value 1 (otherwise, it takes 

value 0), see Fig. 2. Computing these neighborhood matrices for all cells of ConMat, the neighborhood number 

of each cell is obtained by the sum of the values of its neighborhood matrix. 

According to the neighborhood numbers, the contours’ points are sorted and divided into several strokes. For 

this, the filled cell with a minimum neighborhood number is chosen as the first point of the first stroke. 

Thereafter, if that cell has at least an adjacent filled cell (according to the neighborhood matrix of the chosen 

cell), the adjacent cell with the maximum neighborhood number is chosen as the next point of that stroke. This 

procedure is repeated until the last chosen cell has no adjacent filled cell. In this case, if there exists at least a 

filled cell among the other cells, the presented procedure is repeated for the next stroke. Accordingly, the points 

of strokes are obtained (according to the location of chosen cells). To better understand this approach, see 

Algorithm I in Table 1.  

 

 
Fig. 2: An example of a neighborhood matrix: The selected cell for computing the neighborhood matrix is 

highlighted in the left subfigure. Also, the related neighborhood matrix is computed in the right subfigure. 
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Table 1: Sorting Contours’ Points Algorithm 

The algorithm I: Sorting Contours’ Points 

Input: initial ConMat according to the given raster points 

Output: The strokes of the contours presented in ConMat 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Compute the neighborhood matrices for all cells in ConMat; 

While (exists at least a filled cell in ConMat) 

Compute the neighborhood numbers for all cells in ConMat; 

Create a new stroke and open that; 

Choose the filled cell with a minimum neighborhood number; 

Insert the location of the chosen cell in the stroke and make that cell blank in ConMat; 

While (the last chosen cell has at least an adjacent filled cell) 

Choose the adjacent cell with the maximum neighborhood number; 

Insert the location of the chosen cell in the stroke and make that cell blank in ConMat; 

Update the neighborhood matrices for all cells in ConMat; 

End While 

Close the stroke; 

End While 
 

 

For each obtained stroke, we need a path function to draw that. However, raster graphics (due to the 

digitalization process) may include noisy points. Hence, considering all raster points for path planning may be 

an inefficient solution. In the following, we introduce an approach to overcome this problem.  

2.2. Separating method 

Because the contours’ points include noisy data, we propose an approach to remove the points which are less 

important for the path planning procedure. For this purpose, we introduce the stroke curvature as a criterion for 

labeling P as an important one or not: 𝐶(. ) = 𝑆𝑡𝑟𝑜𝑘𝑒𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒(. ). For this, C is computed numerically for 

all points of each stroke. Thereafter, if for a point (e.g., P) we have: C(P) > µ, that point is labeled as an important 

one. Indeed, if the chosen point has a large curvature, that is labeled as an important one. Note that, if µ is 

chosen with a small value, most of the points are considered important points, and on the contrary, if one chooses 

a large value for this parameter, most of the points are labeled as less important.  

Once the main raster points are obtained, we use them for path planning. In the following, we introduce three 

approaches for Raster-To-Vector conversion and path planning. 

2.3. Path planning methods 

Now, we need an approach to present the points of each stroke (see Fig. 3a as a sample) in mathematical forms. 

Indeed, for a stroke (e.g., the ith stroke), we need a path function as: 𝑃𝑖 = 𝑓𝑖(𝑡), that converts the drawing time 

(notated as t) to the stroke position (i.e., Pi). Pi = [Pi (1) Pi (2)] is a vector with two components (to present the 

point location on the X and Y axes). To achieve this purpose, we introduce three interpolation approaches to 

convert raster points to vector presentation. 

1- Dense piecewise: Although we proposed an approach to remove the points with less importance, 

conventionally, all points are considered for interpolation. Hence, as a conventional method, we connect 

every two adjacent points of each stroke with two piecewise linear functions (one for the X and the 

other for the Y axes). Also, to control the drawing speed of the stroke, we consider the length of the 

traced path (for the jth point of the ith stroke notated as si,j) as the input of piecewise linear functions: 

𝑠𝑖,𝑗 = {

0 𝑗 = 1

∑√(𝑃𝑖,𝑘(1) − 𝑃𝑖,𝑘−1(1))
2
+ (𝑃𝑖,𝑘(2) − 𝑃𝑖,𝑘−1(2))

2
𝑗

𝑘=1

𝑜.𝑤.
 (1) 

where ni is the number of points in the ith stroke and Pi,j presents the location of the jth point of that stroke 

the stroke with ni points is formalized with 2ni-2 piecewise linear functions as: 
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𝑃𝑖(1) = 𝐹𝑖1,1(𝑠) = {

ℎ𝑖1,1,1(𝑠)

ℎ𝑖1,1,2(𝑠)

0 ≤ 𝑠 < 𝑠𝑖,2
𝑠𝑖,2 ≤ 𝑠 < 𝑠𝑖,3

…
ℎ𝑖1,1,𝑛𝑗−1(𝑠)

…
𝑠𝑖,𝑛𝑗−1 ≤ 𝑠 < 𝑠𝑖,𝑛𝑗

 

𝑃𝑖(2) = 𝐹𝑖1,2(𝑠) = {

ℎ𝑖1,2,1(𝑠)

ℎ𝑖1,2,2(𝑠)

0 ≤ 𝑠 < 𝑠𝑖,2
𝑠𝑖,2 ≤ 𝑠 < 𝑠𝑖,3

…
ℎ𝑖1,2,𝑛𝑗−1(𝑠)

…
𝑠𝑖,𝑛𝑗−1 ≤ 𝑠 < 𝑠𝑖,𝑛𝑗

 

(2) 

where hi1,1,. and hi1,2,. present the linear functions fitted with the stroke points for the X and Y axes, 

respectively. See Fig. 3b as an example of this approach. 

2- Sparse piecewise: In this approach, after choosing the points with the most important points from each 

stroke (by the approach presented in the “Separating method”), we connect these points with piecewise-

linear functions. Similar to the latter method, the length of the traced path in the chosen points is 

considered as the input of piecewise linear functions. It is worth mentioning that to compute the length 

of the traced path for the chosen points, the points with less importance should be considered for the 

summation operator in Eq. 1. Also, the formulation of this approach is similar to Eq. 2, except this only 

includes the linear functions between the main points. Fig. 3c tried to illustrate an example of this 

approach. 

3- Sparse spline: This approach is similar to the previous one in all cases, except that this approach uses 

spline functions between every two main points, see Fig. 3d.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3: Dense-To-Vector methods: The filled cells in (a) presents the stroke points. (b), (c), and (d) are vector 

presentations of the desired stroke obtained by Dense Piecewise, Sparse Piecewise, and Sparse Spline 

methods, respectively. 

 

Now, for each stroke, we have three mathematical functions: Pi1=Fi1(s), Pi2=Fi2(s), and Pi3=Fi3(s), where Pi1, 

Pi2, and Pi3 denote the stroke point measured by Dense Piecewise, Sparse Piecewise, and Sparse Spline methods, 

respectively. Also, Fi1, Fi2, and Fi3 are the designed stroke trajectories’ functions by Dense Piecewise, Sparse 

Piecewise, and Sparse Spline methods, respectively.  

It should be mentioned here that for drawing a stroke with respect to the time, we need to define the desired 

tracing length as a function of the time as s = g(t), where g denotes the tracing function and t denotes the traced 

time. 

3. CASE STUDY & SIMULATION RESULTS 

In this section, we demonstrate the applicability of the proposed approach by simulating a drawing robot. The 

considered robot includes a pen (for drawing on a sheet), a manipulator (for horizontal movements of the pen), 

and a body (for vertical movement of the manipulator), see Fig. 4. This robot has 3-DoFs (two ones for 

horizontal movements and the other one for vertical movement). The horizontal movement of the pen is 

achieved by two revolute actuators on the serial manipulator. Also, a linear actuator is used for vertical 

movement.  
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Fig. 4: The drawing robot includes a body, a manipulator (with two series links), and a pen. 

 

We consider a mass of 100 grams for both links. The pen simulates a mass of 10 grams. Accordingly, all 

movable parts weigh 410 grams. All robot joints have a small viscous friction torque with a coefficient of 

0.00001 N.m/rad.s. The friction force between the pen and sheet is simulated by a Coulomb friction force with 

a magnitude of 0.001 N.  

The desired contours with 1498 points are illustrated in a matrix with 255×255 cells, as shown in Fig. 5. The 

proposed method for sorting the contours’ points resulted in 14 strokes. For each stroke, we design three 

trajectories according to Dense Piecewise, Sparse Piecewise, and Sparse Spline approaches. For Sparse 

Piecewise and Sparse Spline methods, we consider µ=0.09. Also, for each case, we define the tracing function 

as g(t)=0.1t. Accordingly, we have a constant tracing speed (0.1 m/s) for all trajectories.  

 
Fig. 5: The desired contours 

As mentioned before the designed strokes’ trajectories present the points' location on ConMat. Hence, we should 

map the strokes’ points’ location on the robot workspace. For this purpose, we define the drawing workspace 

as a square with a width and a height of 12×12 centimeters in the front of the robot’s body. Both links of the 

robot have a length of 0.1 m. Accordingly, we use the inverse kinematics relationships of the manipulator to 

find the appropriate angles of revolute actuators to reach a target point in the drawing workspace. 
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After drawing each stroke, the manipulator is stopped and moved up. Then, it begins to move to the initial 

position of the next stroke with a determined speed (4.5 cm/s). Thereafter, the manipulator is moved down to 

begin drawing the next stroke. For each vertical movement, we consider a delay time (0.1 seconds). 

We have implemented the robot model in the MATLAB SimMechanics toolbox. In the simulations, we assume 

all actuators have perfect controllers. This means that in the simulation, we assume the trajectory tracking error 

equals zero. 

According to the mentioned conditions, we simulated the drawing task for the three designed trajectories. The 

simulation results showed that the robot with the first method (Fi1 with 1497 piecewise linear functions and an 

overall length of 0.84 m) consumed 0.9 joules of energy in 8.42 seconds. Also, the drawn contours obtained 

with this method are shown in Fig. 6a. The robot with the second method (Fi2 with 72 piecewise linear functions 

and an overall length of 0.77 m) consumed 0.14 joules of energy in 7.69 seconds. The contours drawn with this 

method are illustrated in Fig. 6b.  Also, the third method (Fi3 with 72 spline functions and an overall length of 

0.78 m) resulted in 0.22 energy consumption in 7.8 seconds. The contours drawn with this method are illustrated 

in Fig. 6c.  

4. DISCUSSIONS 

According to the obtained results, we can conclude that the robot with the first method (Dense Piecewise) needs 

the highest energy to draw the desired contour. Meanwhile, because the digital raster graphic includes noise, 

the obtained drawn contours include wave-like noise, too. Indeed, these undesirable movements, which are the 

result of noisy data, increased the energy consumption of the drawing task. Hence, considering all raster points 

for path planning is an inefficient approach for such a case. Especially, for raster graphics with significant errors.  

Accordingly, in the second approach (Sparse Piecewise), we used the proposed method to remove the less 

important points to exclude parts of noisy data. The results indicate that the second approach has the least energy 

consumption. However, because the remained points are connected with piecewise linear functions, the obtained 

drawn lines are very simplified in comparison to the desired contours. In other words, the fitted functions are 

not so flexible to yield the desired contours. 

To address the mentioned problem, in the third approach (Sparse Spline), we used spline functions to connect 

the main points. The results showed this approach with a little more energy consumption than the second one, 

achieved the most acceptable curvatures.  

Needless to say, each method has its advantages and disadvantages. The main advantage of the Dense Piecewise 

approach is considering all given raster points (without neglecting any data) in the path planning procedure. 

This is good for cases with negligible noise. On the other hand, this feature may be a disadvantage for significant 

noisy data. Besides, this needs more time to obtain the output. 

The advantage of Sparse Piecewise, in addition to excluding some noisy data, is its simplicity and speed. In 

other words, for cases where fast drawing is desirable, this approach can be an ideal candidate. However, its 

disadvantage is that it is not sufficiently smooth to obtain curvy lines. 

Nevertheless, the Sparse Spline stands between Dense Piecewise and Sparse Piecewise. Indeed, although this 

approach includes less noisy data than Dence Piecewise, its output has proper flexibility to achieve curvy 

contours. Hence, we think the proposed approach is a simple, fast, and efficient approach for path planning to 

draw contours. However, the disadvantage of this approach is excluding parts of given data, which may result 

in undesirable contours in cases with negligible noisy data. 
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(a) 

 

 
(b) 

 
(c) 

Fig. 6: The drawn contours in the simulation: (a), (b), and (c) presents the obtained contours by Dense 

Piecewise, Sparse Piecewise, and Sparse Spline methods, respectively. 
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5. CONCLUSIONS 

For path planning to draw contours, this work firstly proposed a method to sort the points of desired contours 

in several strokes. Secondly, a novel method was proposed to identify the main points of each stroke. 

Accordingly, to show the applicability of the proposed method, three approaches were introduced for Raster-

To-Vector conversion: Dense Piecewise, Sparse Piecewise, and Sparse Spline. Finally, considering energy 

efficiency as a desired feature for drawing robots, in the simulations, we studied the effect of using the proposed 

approach on the path planning of a simulated drawing robot. The simulation results showed the superiority of 

the proposed method in comparison with a conventional method.  

In this work, we consider the same tracing function for comparing the presented approaches. Nonetheless, 

designing a proper tracing function may affect the energy efficiency of the robot. This will be studied in our 

future works. Also, in future works, we will design and implement a drawing robot in an attempt to study the 

proposed approaches on a real robot. 
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