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ABSTRACT 

     In a typical multi-attribute decision-making (MADM) problem, different alternatives are presented for 

evaluation depending on multiple criteria. By default, independence or slight interrelation of criteria is an 

essential prerequisite in most existing MADM techniques to generate appropriate and non-overrated 

discrimination scores. This research, applying a tailored version of the factor analysis (FA) method, prepares an 

integrated algorithm for empowering MADM techniques to deal with the kinds of criteria carrying severe 

interrelation. Accordingly, guidelines for adjusting FA are proposed here to simultaneously eliminate the criteria 

interrelation and decrease the data volume, so that only the main aspects of data are taken into consideration for 

decision-making. In the end, the practical case of financial discrimination is investigated for companies listed 

in the stock exchange applying the proposed algorithm, and the results are validated using ELECTRE and 

VIKOR techniques. Furthermore, the shortcomings of conventional adjustments for FA are explored through 

the case study. The proposed approach is also applicable for evaluating alternatives in portfolio management, 

supply chain management, credit scoring, ranking, etc. It is also helpful in boosting machine learning algorithms 

and digitization of sectors such as healthcare, manufacturing, marketing, IoT processing, and recommendation 

systems. 

KEYWORDS: Multi-attribute decision-making; Principal component analysis; Factor analysis; Financial management; 

Fundamental analysis. 

 

 

1. INTRODUCTION 

In a typical multi-attribute decision-making (MADM) problem, several alternatives are presented for evaluation 

from the perspective of some common criteria. Data acquired through these evaluations form a decision matrix. 

The purpose of MADM is to calculate the synthetic utility value of existing alternatives using the decision 

matrix to rank them. Most of the existing MADM techniques could produce appropriate and non-overrated 

synthetic utility values only when the interrelation of criteria is inconsiderable (Hatami-Marbini et al. 2020; 

Huang et al., 2021; Hekmat et al. 2021). SAW, AHP, TOPSIS, and VIKOR are among these techniques their 

additive nature could result in overrated decision assessments. In cases where the criteria are not necessarily 
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mutually independent, if an additive aggregating method is used to derive the synthetic utility value, which is 

the same as the traditional assumption for the independent relationship among criteria, the result would become 

an overestimate or underestimate in different situations (Chiou et al. 2005; Kuo and Liang 2011). The existence 

and severity of such interrelation could be discovered using statistical tests based on the statistical correlation 

of any pair of criteria in the decision matrix. Severe correlations between the criteria may result in synthetic 

utility values with exaggerated and not properly discriminated values and the consequence is doubtfulness and 

deviation of the decision maker. This problem makes the decision maker reduce or eliminate the interrelation 

between criteria as a solution. In addition, the independence of criteria is a useful characteristic by itself, because 

it denotes that different aspects of data are considered and measured by the criteria (Manly, 2004). 

   Principal component analysis (PCA) and factor analysis (FA) are appropriate mathematical tools applied to 

eliminate or reduce the interrelation between criteria or to describe the initial variables according to a fewer 

number of factors so that a simpler model is found out of the initial model. Thus, the synthesis of these 

techniques with those of MADM could establish a potent tool for decision-making. However, the output of PCA 

and FA techniques accompanied by MADM methods, are not favorable all the time and in case of not adjusting 

them properly, unexpected, and far-fetched conclusions are obtained. Investigating this mismatch and solving 

it is the main purpose of this research. 

   Numerous applications of PCA accompanying multi-criteria decision-making (MCDM) methods exist in the 

literature. For example, Tung and Lee (2009) developed a grey approach to PCA which replaced the correlation 

matrix with another matrix called GADI. The interrelation of the decision criteria is calculated through a 

geometrical method in this matrix instead of the usual statistical correlation. Thus, the constraints related to the 

necessity for the excessive volume of data and conforming to normal distribution are eliminated. Tung and Lee 

(2010) developed this method for FA and applied it to evaluate the performance of Taiwanese biotechnological 

companies. Along with the former researchers, Mahbub et al. (2011) used the techniques of PCA and 

PROMETHEE to explore the process of the build-up of semi and non-volatile organic compounds as the 

environmental pollutants of the urban roads. In another study, Hatami-Marbini et al. (2020) performed an 

evaluation process using a multi-attribute efficiency analysis model and a multivariate statistical method, a so-

called PCA-Data-Envelopment-Analysis (PCA-DEA) method, to support supplier relationship management 

under uncertainty. Hekmat et al. (2021) conducted another related study using PCA-DEA for decision-making. 

This method, classified as a semi-DEA model based on multivariate statistical ranking, provides a complete  

ranking of suppliers and deals with too many inputs and outputs existing in interrelated datasets. Recently, the 

model of Stević et al. (2022) is developed based on the integration of DEA, PCA, CRITIC (Criteria Importance 

Through Inter Criteria Correlation), Entropy, and MARCOS (Measurement Alternatives and Ranking according 

to the Compromise Solution) methods. This study is conducted for determining the final efficiency of 

transportation companies based on ten input-output parameters. Also, Dugger et al. (2022) outlined a study to 

evaluate the effectiveness of PCA as an objective weight assignment method to establish the rank order of pilots 

in aviation communities. This study intended to reduce subjectivity in the group-based MCDM pilot selection 

process. In another study in line with the present research, Heydari et al. (2022) considered the multi-criteria 

global financial development-ranking problem for some Middle Eastern countries. They proposed a solution 

methodology based on weighted PCA and TOPSIS while considering both linear and nonlinear data 

relationships. 

   As an implementation case of PCA in terms of FA, Chiou et al. (2005) used FA to discover the interrelated 

criteria and classify them as common factors in a MADM problem. This research applied the non-additive fuzzy 

integral to aggregate the synthetic utility values of the alternatives within the factors. Ultimately, the simple 

additive weighting (SAW) method is used to gain the final discrimination scores of alternatives. FA, 

DEMATEL, fuzzy integral, and AHP tools were used together by Tzeng et al. (2007) to prepare a 

comprehensive evaluation model of electronic training programs. In their model, it was possible to consider the 

interrelations of criteria and fuzziness of experts’ objective judgments to assess the electronic training programs. 

Mousavi et al. (2009) used FA to classify 10 important criteria as 4 distinct factors and ranked five maintenance 

strategies by transforming the problem into a multilevel AHP and using the fuzzy TOPSIS method. Huang et 
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al. (2021) developed a DEA-integrated grey factor analysis approach for efficiency evaluation and ranking in 

uncertain systems. Chen et al. (2021) conducted another related study proposing a random intuitionistic fuzzy 

FA model to address the problem of complex multi-attribute large group decision-making from three 

perspectives. This method effectively reduces data dimensionality and considers the underlying random 

environmental factors that can affect the performance of the alternatives. 

Decision-making has always been a problematic issue in exchange marketplaces of bourse for trading stocks, 

bonds, commodities, and futures. Analytics in this field is considered from two viewpoints: fundamental and 

technical. The fundamental analysis investigates a company's finances, internal operations, industrial market 

conditions, and domestic and international policies. Meanwhile, technical analysis assumes that stocks follow 

certain trends in moving to an equilibrium point. Hence, past prices and volume changes are considered in 

technical analysis to predict future price trends (Cheng et al., 2021). According to this mindset, the present study 

intends to perform its decision-making assessments in the stock exchange based on fundamental analysis 

concepts. The reason behind this is that the long-term profitability of listed companies rather than short or 

medium-term prediction measures of liquidity or price trends is considered here. 

   Next, it is intended to discuss a brief review of the PCA method in section 2. In section 3, first, the exploratory 

FA method is illustrated as the structural basis of the model. Then, the integration issue of the existing FA 

method into the MADM approach is analyzed in part 3.2. Also, the development of the method and necessary 

adjustments are reasoned in this part. The last part of section 3 is dedicated to illustrating the step-by-step 

algorithm of the approach. The discriminative study and fundamental analysis of 41 listed companies in the 

Tehran stock exchange are explained in part 4.1. The other part of section 4 tries to verify the proposed approach 

in a more explicit case using the results of the former part. 

2. PRINCIPAL COMPONENT ANALYSIS 

   PCA technique was first introduced by Karl Pearson (1901) and its practical calculations in the presence of 

two or more variables were illustrated by Hotelling (1933 cited Manly 2004). PCA is a statistical and 

multivariate approach for data reduction and is applied to gain a smaller set of variables explaining a significant 

proportion of the variance of initial data (Bolch and Huang, 1974). The influence of PCA as a pioneer 

dimensionality reduction technique is evident in making predictions and uncovering patterns of big data in terms 

of machine learning (Reddy et al., 2020). PCA is also a favorable technique for ranking in multivariate analysis 

(Slottje et al., 1991 cited Zhu, 1998). PCA method tries to find compositions of p variables (criteria) of X1, X2, 

…, Xp to form p independent variables of Z1, Z2, …, Zp. These independent variables are known as principal 

components of initial variables and can explain the whole amount of the variance of initial variables. In other 

words, principal components are some independent criteria that could be substituted for initial severe 

interrelated criteria. The lack of interrelation between the criteria is a useful characteristic because it denotes 

that the criteria are measuring different aspects of data. PCA starts with p variables as criteria for n alternatives. 

The 1st principal component is a composition of the variables X1, X2, …, Xp such that: 

Z1=v11X1+v12X2+…+v1pXp, with the conditions of: 

i. 
2 2 2

11 12 1 1pv v v+ + + =  

ii. Variance of Z1 is maximized. 

Note that each variable Xj (j= 1, …, p) is a column vector of n elements denoting the scores of n alternatives for 

the jth criteria. The 2nd principal component is calculated as Z2=v21X1+v22X2+…+v2pXp, in order that: 

i. 
2 2 2

21 22 2 1pv v v+ + + =  

ii. Setting Z1 aside, the variance of Z2 is the maximum accessible amount explaining the remaining variance 

of data.  

iii. Z2 is independent of Z1. 
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Just like in the previous step, the 3rd principal component is described, considering Z3 independent of the 

previous components. Thus, p independent principal components are obtained out of the initial variables 

explaining different aspects of data, with the feature: 

 1 2Var( ) Var( ) Var( )p  Z Z Z  (1) 

A more practical procedure to construct the principal components is explained in the literature. This procedure 

is initiated by replacing each variable with its standardized format (by subtracting the variable mean value and 

dividing the result by its standard deviation). Then, the correlation matrix is calculated for the variables matrix, 

whose columns stand for the variables. The correlation matrix of an n×p matrix is a symmetric p×p matrix, 

whose element of position (i,j) stands for the statistical correlation coefficient between columns i and j (i,j 

=1,…,p). Finally, the eigenvectors of the correlation matrix are used instead of the mentioned coefficients of Vi 

= (vi1, vi2, …, vip) to construct the principal components (Manly, 2004). The nonzero column vector V of 

dimension p is identified as an eigenvector of matrix Cp×p, if a nonzero scalar of λ exists such that: CV=λV. 

Also, λ is called an eigenvalue of C corresponding to V. 

3. PROPOSED APPROACH 

3.1. Structural basis of the model 

   According to the PCA and factor analysis literature indicated in Section 1 and the beginning of Section 2, 

initial data could be demonstrated in a fewer number of classes to form a simpler model of the initial one. It 

means that there exist various techniques to abbreviate p initial variables in form of m (m≤p) common factors; 

this is the foundation of FA. FA is a method of dimension reduction in multivariate statistics, which is applied 

to extract latent variables among manifest variables, and PCA is one of the main techniques to accomplish it 

(Chiou et al. 2005). Also, there are other approaches such as a maximum likelihood or Little–Jiffy to accomplish 

the FA. 

   As it was mentioned before, this research tries to employ FA to propose a practical method of data reduction 

for the elimination or reduction of criteria interrelation in MADM problems. This helps the decision maker to 

obtain more differentiated and realistic responses in case of complex and interrelated situations. Next, the 

adjusted procedure of data reduction for MADM applications is presented, which is integrated into FA using 

PCA (for a detailed illustration of the general FA method see (Manly 2004). 

   First of all, to construct a uniform procedure, the data should be classified in a decision matrix with n rows of 

alternatives evaluated on p columns of criteria. These criteria should all have beneficial nature, i.e., the bigger 

the better. In order to accomplish this purpose, the columns of cost criteria (the smaller the better) must be 

subtracted from their maximum value. Thereafter, the columns of the decision matrix should be standardized 

by subtracting their mean value and dividing the result by the standard deviation of each column. Next, to exert 

the influence of different criteria levels of importance, each column should be multiplied by the corresponding 

criterion weight. Just as mentioned before, the columns of the non-interrelated matrix are calculated using the 

standardized and weighted matrix as below: 

 1 1 2 2 , 1, ,i i i ip pv v v i p= + + + =Z X X X  (2) 

   The vectors Vi = (vi1, vi2, …, vip) stand for the eigenvectors calculated for the covariance matrix of the 

standardized and weighted decision matrix. The calculation of the covariance matrix is similar to the correlation 

matrix, which was explained before. The eigenvectors calculated here must satisfy the properties of being united 

and orthogonal. Vi is a unit vector when vi1
2+vi2

2+…+vip
2=1. Vi and Vj are orthogonal vectors concerning each 

other when vi1vj1+vi2vj2+…+vipvjp=1 (i, j= 1, …, p). The point here is that each principal component is uniquely 

constructed using one of the eigenvectors. In addition, if Zi is constructed using Vi, then the variance explained 

by it would be equal to the corresponding eigenvalue, λi. Therefore, the eigenvectors have to be sorted by 

descending order of eigenvalues so that the property of Eq. (1) is held. Note that the eigenvalues here are all 

positive real scalars. 
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   Here, it is important to say that the covariance matrix is substituted for the correlation matrix in the context 

of general PCA, to activate the influence of criteria weights. It means that the use of a correlation matrix here 

would have neutralized the effect of diverse criteria weights considering the criteria equal. In addition, note that 

the covariance matrix of the standardized but not weighted decision matrix is equal to the correlation matrix. 

The mentioned reforming of variables (Xs) to principal components (Zs) has an orthogonal mode, such that the 

reverse equalities are held as: 

 1 1 2 2 , 1, ,i i i pi pv v v i p= + + + =X Z Z Z  (3) 

   In decomposition to factors, just the principal components with their accumulative variance amounts 

exceeding 90 percent of the whole variance of data are kept. These components are selected among the ones 

with greater amounts of variances. Consider Eq. (4) to obtain the weight of principal component j: 

 
1

, 1, ,
p

j j k

k

w j p 
=

 = =  (4) 

   Thus, only the first m out of p principal components are chosen with their aggregate weight value reaching 

0.90. Thus, Eq. (3) is reformed as: 

 
1 1 2 2 , 1, ,i i i mi m iv v v i p= + + + + =X Z Z Z E  (5) 

   Here, the vector Ei stands for the residual known as the special factor. The criterion mentioned here is based 

on achieving a specified cumulative percentage of the total variance which has been defined by successive 

factors. This amount is not constant everywhere and aims to ensure that the extracted factors can explain at least 

a specified amount of variance. Practically, to be satisfactory, the total amount of variance defined by factors 

should be at least 95 percent in the natural sciences, and 60 percent in the social sciences. However, no absolute 

threshold has been adopted for all applications (Hair et al. 1998). 

   There is also another criterion in which only the factors corresponding to eigenvalues greater than 1 are 

considered significant. But this criterion is only applicable when the correlation matrix is used instead of the 

covariance matrix, or when the covariance matrix is calculated upon the standardized and not weighted decision 

matrix, which is equal to the correlation matrix in this case. It should be noted that the first criterion is defined 

in the mentioned way because in the case of using the covariance matrix some eigenvalues might become so 

large that the ones neighboring 1 are considered insignificant. 

   Now, the next step is to rescale the principal components Z1, Z2, …, Zm to have variances equal to 1, so that 

appropriate factors are made. For this rescaling, Zj (j= 1, …, m) must be divided by its standard deviation, j

. Considering the substitution of j j j =Z F , Eq. (5) is revised as: 

 1 1 1 2 2 2 , 1, ,i i i m mi m iv v v i p  = + + + + =X F F F E  (6) 

Assuming j ji ijv a = , the latter equation may be displayed as: 

 
1 1 2 2 , 1, ,i i i im m ia a a i p= + + + + =X F F F E  (7) 

As a complementary explanation, it should be indicated that: 

 
2 2 2

1 2 , 1, ,j j j pja a a j m = + + + =  (8) 
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   So far, data was abbreviated in the form of m factors. Most of the time, it is necessary to extract the factors in 

a way that the absolute statistical covariance coefficient between each initial variable and only a small number 

of factors (preferably only one factor) is maximized, and the rest are minimized. This can be conducted through 

a rotation of factors. Considering that the aij loading is equal to the statistical covariance coefficient of ith initial 

criteria and jth factor (Xi and Fj), rotation of factors intends to minimize the absolute value of all but just one (or 

a small) number of aijs for each i (in case of using the correlation matrix instead of the covariance matrix, aij 

would be the statistical correlation coefficient of Xi and Fj). Thus, each initial variable is correlated severely 

with only one (or a small) number of factors. As a result, each initial variable is never represented by more than 

one factor (aspect), so the reduction of data is accomplished properly. 

   The rotation of factors could be orthogonal or oblique. Orthogonal rotation does not allow the factors to be 

interrelated, just as the original factors do. In contrast, rotated factors using oblique rotation are interrelated to 

some extent and this makes the oblique rotation inappropriate for the current approach. However, loadings are 

more polarized in oblique rotation and Xis are related to Fjs more distinctly. As an orthogonal rotation, Varimax 

rotation is widely used as a standard method. This method was first proposed by H.F. Kaiser and later was 

modified by normalizing to reach presumably better results. So, Varimax rotation could be applied using 

Kaiser’s normalization method or without it. 

   Now, if the loadings are rotated using one of the existing rotation techniques (such as Varimax loading), then 

the model would turn to: 

 * * *

1 1 2 2 , 1, ,i i i im m ig g g i p= + + + + =X F F F E  (9) 

Which 
*

iF  stands for the ith factor after rotation and gij denote the rotated loading expressing the covariance 

coefficient of Xi and 
*

jF . It is useful to mention that the rotation of factors also transforms the corresponding 

eigenvalues. Considering Eq. (8), the eigenvalues are substituted as: 

 
2 2 2

1 2 , 1, ,j j j pjg g g j m = + + + =  (10) 

   Because of complex and excessive amounts of calculations, it is better to utilize computational software 

programs like MATLAB or PSAW (SPSS) to accomplish the rotation of loadings. To estimate the factor scores 

after rotation, the following equation could be applied: 

 
* T 1( )−=F XG G G  (11) 

Where 
* * * *

1 2[ , , , ]n m m =F F F F , Xn×p = [X1, X2, …, Xp], and G is the p×m matrix of rotated factor loadings. This 

equation estimates the factor scores as linear compositions of initial variables. For these factors, the weight 

values are calculated by Eq. (12) to be used for MADM applications: 

 
1

, 1, ,
m

j j k

k

w j m 
=

 = =  (12) 

3.2. Analysis and development 

   Here, some necessary statements would be discussed to analyze and adjust the vulnerable points of the 

mentioned structure. 

Proposition 1. If Vi is an eigenvector of matrix C and λi is the corresponding eigenvalue, then –Vi is an 

eigenvector too (i =1, …, p). 

Proof. If CVi=λiVi, then C (–Vi) = λi(–Vi). □ 
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Proposition 2. If Vi holds the property of unity, then –Vi does too (i =1, …, p). 

Proof. If Vi
2=vi1

2+vi2
2+…+vip

2=1, then (–Vi)2= (–vi1)2+(–vi2)2+…+(–vip)2=1. □ 

Proposition 3. If Vi and Vj are orthogonal vectors, then –Vi and Vj are so too (i, j =1, …, p). 

Proof. If Vi.Vj=vi1vj1+vi2vj2 +…+vipvjp=0, then (–Vi).Vj= (–vi1)vj1+(–vi2)vj2+…+(–vip)vjp=0. □ 

   In conclusion, the additive inverse vector of each eigenvector is an eigenvector by itself, holding the properties 

of unity and orthogonality with respect to the rest, and thus could be substituted for the original vector. The 

intrinsic problem with the identified FA method is expressed in this way: if the eigenvector Vj is replaced by its 

additive inverse, then the respective principal component Zj, becomes additively inversed too (multiplied by –

1). Then, if this principal component is intended to be transformed as a factor, again the extracted factor and 

even its rotated vector become additively inversed, and this leads to a quite contradictory factor. The main point 

here is to select the correct eigenvectors so that the extracted factors become reasonable. Considering the point 

that the first step of PCA is spent to transform the cost criteria into benefit criteria, it is expected that the 

determined principal components and also the factors using benefit criteria possess the property of bigger the 

better. This property may be inherited by the existing positive covariance coefficients between each factor and 

the main criteria from which it is generated. It was already mentioned that the covariance coefficient between 

the jth factor and the ith criterion is equal to aij loading in Eq. (7) for on-rotated factors and gij loading in Eq. (9) 

for rotated factors. Thus, for each j if most of the gij loadings with large absolute values gain positive amounts, 

the property of having a benefit nature is transferred to the rotated factor j. In case of no factor rotation, this 

condition could be explored by considering amounts of gij coefficients to be the same as those of aij. Thus, the 

condition could be satisfied by one of the following criteria: 

i. Making the sum of gij coefficients for each j positive. In other words, the sum of the columns of matrix 

G should be positive values. It is concluded that between an eigenvector and its additive inverse, the one 

which makes the sum of the elements of the corresponding column of matrix G positive is chosen 

(remember that each column of this matrix is derived from an eigenvector). In a more precise notation, 

the eigenvector Vj is chosen if: 

 
1

0, 1, ,
p

ij

i

g j m
=

 =  (13) 

Otherwise, its additive inverse is appropriate to be chosen. 

ii. As a second adjusting method, it is suggested to choose an eigenvector if the following criterion is held: 

 
1

0, 1, ,
p

i ij

i

w g j m
=

 =  (14) 

Here, wi stands for the weight of ith initial criterion (variable). This inequality tries to make the most of 

absolute covariance coefficients between each factor and the initial criteria become positive values 

considering the importance of the initial criteria. 

   It was already mentioned that if the additive inverse of an eigenvector is substituted for itself, the 

corresponding principal component, the corresponding factor, and also the rotated factor become additively 

inversed. Thus, the corresponding loadings of aij and gij must be additively inversed so that Eq. (7) and (9) are 

held. In conclusion, for the indicated sum of Eq. (13) or the weighted sum of Eq. (14) to become additively 

inversed, it is enough to additively inverse the corresponding eigenvector. 

   Another approach is presented by Slottje et al. (1991) cited and applied by Zhu (1998) and Premachandra 

(2001) which tries to calculate the final synthetic utility value of each alternative using a simple additive 
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weighting method upon the initial criteria. In order to overcome the distorting effect of existing severe 

interrelations, this approach exerts the influence of the PCA method by allocating new weights to the criteria. 

Considering Eq. (2) and the weights of principal components expressed in Eq. (4), the final synthetic utility 

values of n alternatives are calculated by the following equation: 

 1

1 1 1

p p p

n i i i ij j

i j i

w w v

= = =

 
 = =  

 
  Y Z X  (15) 

It is assumed in the literature that negative or positive signs may be assigned to the weights iw , depending on 

the corresponding eigenvectors. This issue could be interpreted as classifying the principal components as 

benefit or cost criteria. The rule is expressed in this way: when the ith eigenvector consists of nonnegative 

elements, the weight of principal component i is assumed to be positive. Otherwise, when the corresponding 

eigenvector consists of non-positive elements, the weight is assumed to be negative. However, the results of the 

eigenvectors' orthogonality feature make these criteria useless in general. Considering eigenvectors in which 

both positive and negative elements are involved simultaneously, the rule determines the sign iw  so that all of 

the aggregated weights identified by Eq. (16) become nonnegative. 

 𝑤̃𝑗 = ∑ 𝑤𝑖
′𝑣𝑖𝑗

𝑝
𝑖=1 , 𝑗 = 1, … , 𝑝 (16) 

   Again, the existence of cases lacking possible solutions makes this criterion, not a well-defined one. 

   Based on the discussed justifications of the proposed adjusting criteria, this rule may be modified to go with 

the FA method. Thus, when the ith column of matrix G, as corresponding loadings of factor i, is consisted of 

nonnegative elements, the related factor weight is assigned to be positive; and when the mentioned column 

consists of non-positive elements, the corresponding weight is considered to be negative. Otherwise, considering 

H=[hij]p×m=G(GTG)-1 in Eq. (11), the sign of factors' weight obtained by Eq. (12) are determined in a way that 

makes the aggregated weights defined by Eq. (17) all become nonnegative. 

 𝑤̃̃𝑖 = ∑ 𝑤𝑗
″ℎ𝑖𝑗

𝑚
𝑗=1 , 𝑖 = 1,… , 𝑝 (17) 

Thus, the same as Eq. (15), the synthetic utility values of the alternatives are acquired using: 

 𝒀𝑛×1 = ∑ 𝑤𝑗
″𝑭𝑗

𝑚
𝑗=1 = ∑ 𝑤̃̃𝑖𝑿𝑖

𝑝
𝑖=1  

However, through the empirical analysis, it is demonstrated that in some cases, any permutation of the weights 

with negative or positive signs does not lead to proper nonnegative weights. This problem invalidates the 

generality of the recent approach and values the proposed adjustments. 

   Next, the precise procedure of the proposed approach is illustrated through a step-by-step algorithm. 
 

3.3. Algorithm of the model 

Step 1. Classify the data in a decision matrix with n rows allocated to alternatives scored on p columns of 

criteria and entitle it Xn×p= [X1, X2, …, Xp]. 

Step 2. Convert the cost criteria (smaller the better) to benefit criteria (bigger the better) by subtracting the 

corresponding columns from their maximum values. 

Step 3. Standardize each column of the decision matrix by subtracting its mean value and dividing the result 

by the standard deviation. 
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Step 4. Multiply each column by its respective criterion weight and replace the resultant matrix with X. In 

case of equal weights for all criteria, skip this step. 

Step 5. Calculate the covariance matrix of X and entitle it Cp×p. 

Step 6. Calculate the eigenvalues and eigenvectors of C and sort them considering the descending order of 

eigenvalues. Note that the eigenvalues (expressed by λis, i=1, …, p) are all positive real scalars. 

Constitute the matrix Vp×p= [V1, V2, …, Vp] T whose rows consist of the eigenvectors in the mentioned 

order. 

Step 7. Form the principal components matrix (Zn×p= [Z1, Z2, …, Zp]) using the equation: Z=XVT. 

Step 8. Considering 
1

p

i kk
 

=  the weight of principal component i, select the first m out of p principal 

components, with their aggregate weight value reaching 0.90. In case of equal weights for all criteria 

in step 4, select the principal components corresponding to eigenvalues greater than 1. Substitute the 

shrunk matrices of principal components and eigenvectors for Z and V respectively. 

Step 9. Rescale the principal components to have variances equal to 1. For this, set j j j =Z F  and 

j ji ijv a =  (i= 1, …, p and j= 1, …, m). Thus, consider Fn×m= [F1, F2, …, Fm] as the on-rotated 

factors matrix and Ap×m=[aij] as the on-rotated loadings matrix. 

Step 10. Rotate the loadings matrix of A to form Gp×m using orthogonal rotation methods. Computational 

software programs like MATLAB or PSAW (SPSS) could be utilized in this step. Calculate the sum 

of the squares of rotated factor loadings in each column of A to form the new eigenvalues after rotation 

( j s). 

Step 11. If the following criterion is not held for a j (j= 1, …, m), then multiply the corresponding row(s) in 

matrix V of step 6 by –1 and repeat the algorithm. 

i. 
1

0, 1, ,
p

ij

i

g j m
=

 =  

The criterion (ii) below may be substituted for (i). Be aware to choose only one of these criteria to 

continue the algorithm in all iterations. 

ii. 
1

0, 1, ,
p

i ij

i

w g j m
=

 =  

Step 12. Estimate the rotated factor scores by F*=XG(GTG)-1. 
* * * *

1 2[ , , , ]n m m =F F F F  stands for the final 

decision matrix with independent criteria expressed in columns and rows representing scores of 

alternatives. 

Step 13. Calculate the weight values of factors by 
1

m

j j jk
w  

=
  =  . 

Step 14. Apply a MADM technique to rank the alternatives conveniently. 

According to the discussed algorithm, the steps are briefly presented in Fig. 1. 
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Fig. 1. The proposed approach in a step-by-step algorithm 

4. EMPIRICAL ANALYSIS 

4.1. Case study:  Ranking listed companies 

    Fundamental analysis and financial discrimination of companies have assumed great importance recently 

since it is beneficially applicable to evaluate the alternatives in portfolio management, supply chain 

management, credit scoring, ranking, etc. Here, it is intended to discriminate and rank 41 Iranian listed 

companies of the Tehran stock exchange regarding several impressing criteria. Consider the data displayed in 

Table 1 as a report of several financial indices obtained for the companies chosen from different industries. Data 

is extracted from balance sheets and income statements of 1393 and 1394 financial years in the solar Hijri 

calendar (starting from 2014 to 2016) and is arranged as illustrated in the 1st step. Since these financial indices 

are calculated upon some common data, the criteria are expected to be interrelated together. This issue is tested 

through the two following statistical tests based upon the correlations of criteria. The value of the Kaiser–

Meyer–Olkin (KMO) measure of sampling accuracy is 0.663, which is much higher than 0.5 and thus is 

considered acceptable. Also, Bartlett's test of sphericity reached the value of 389.042, and considering 55 

degrees of freedom, the associated level of significance is 0.000, indicating that the population correlation 

matrix is not an identity matrix. The test results indicated that the sample data was suitable for FA. 

  

1
• Classify data in a decision matrix entitled X (rows for alternatives, columns for criteria) 

2
• Convert the cost criteria (smaller the better) to benefit criteria (bigger the better) 

3
• Standardize each column of the decision matrix 

4
• Multiply each column by its respective criterion weight and replace the resulted matrix with X

5
• Calculate the covariance matrix of X and entitle it C

6
• Calculate the eigenvalues and eigenvectors of C, sort them and place them as rows of a matrix entitled V

7
• Form the principal components matrix Z using the equation: Z=XVT

8
• Considering the weight or the associated eigenvalue of principal components, select a number of principal components and substitute the shrunk matrices of Z and V

9
• Rescale the principal components to have variances equal to 1 and form both factors matrix (F) and on-rotated loadings matrix (A)

10
• Rotate the loadings matrix A to form G using orthogonal rotation methods

11
• If the adjusting criterion is not held for a column of G, then multiply the corresponding row in matrix V of step 6 by –1 and repeat the algorithm

12
• Estimate the rotated factor scores by F*=XG(GTG)-1

13
• Calculate the weight values of factors 

14
• Apply a MADM technique to rank the alternatives conveniently



56    Journal of Applied Intelligent Systems & Information Sciences  

 

 

 

Table 1. Comparison of 41 Iranian listed companies considering 11 impressing financial indices 
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Type Benefit Cost Cost Benefit Benefit Benefit Benefit Benefit Benefit Benefit Cost 

Weight 2 1 1 2 2 2 1 2 2 1 1 

1 0.05 4.38 0.81 0.05 0.31 21.53 1.19 0.12 1.85 1.14 0.85 

2 0.03 15.23 0.94 0.01 0.19 1.74 0.93 0.11 1.50 0.41 0.83 
3 0.17 3.40 0.77 0.16 0.69 0.73 0.87 0.26 4.72 1.11 0.65 

4 0.10 1.44 0.59 0.11 0.31 0.69 1.27 0.16 2.49 1.17 0.69 

5 0.08 2.96 0.75 0.04 0.17 -0.61 0.54 0.19 1.95 0.53 0.69 
6 0.15 2.01 0.67 0.09 0.27 -5.99 1.30 0.20 6.85 0.58 0.72 

7 0.25 0.78 0.44 0.10 0.20 0.10 1.36 0.34 5156.07 0.48 0.43 

8 0.02 3.26 0.77 0.03 0.10 -9.62 0.93 0.03 1.83 1.44 0.97 
9 0.07 4.05 0.80 0.05 0.17 0.13 1.09 0.19 1.55 0.56 0.74 

10 0.08 3.59 0.78 0.08 0.40 -1.61 1.17 0.10 2.44 0.99 0.88 

11 0.08 2.39 0.71 0.10 0.37 1.17 2.00 0.07 5.99 1.33 0.86 
12 0.26 1.29 0.56 0.21 0.56 1.37 1.60 0.34 13.70 0.99 0.61 

13 -0.05 4.25 0.81 -0.06 -0.27 5.10 0.46 0.03 0.38 1.01 0.93 
14 0.15 1.17 0.54 0.14 0.31 21.67 0.83 0.09 6.24 0.99 0.84 

15 0.38 0.65 0.39 0.44 0.82 0.91 1.52 0.41 67.14 1.22 0.51 

16 -0.05 8.58 0.90 -0.01 -0.06 -6.11 0.48 0.00 0.72 0.14 0.93 
17 0.13 1.81 0.64 0.12 0.35 5.22 1.30 0.21 6.22 0.91 0.74 

18 0.27 0.92 0.48 0.14 0.25 2.49 1.09 0.28 12.74 0.53 0.65 

19 0.07 3.52 0.78 0.09 0.47 -33.55 1.03 0.13 2.55 1.32 0.80 
20 -0.06 9.66 0.91 -0.09 -0.63 1.97 0.70 0.01 0.04 1.39 0.94 

21 0.11 1.81 0.64 0.11 0.34 -3.39 1.65 0.17 3.99 0.95 0.78 

22 0.02 1.63 0.62 0.01 0.02 6.76 1.08 -0.01 1.39 0.39 0.75 
23 0.22 1.00 0.50 0.19 0.39 0.05 1.37 0.30 8.23 0.90 0.61 

24 -0.05 2.86 0.74 -0.02 -0.07 3.95 0.66 0.04 0.46 0.34 0.89 

25 0.23 1.47 0.59 0.14 0.36 0.48 1.38 0.34 5.85 0.71 0.63 
26 0.22 1.27 0.56 0.09 0.21 1.30 1.18 0.23 3.43 0.45 0.86 

27 0.52 1.73 0.63 0.16 0.42 2.02 0.48 0.56 206.75 0.35 0.39 

28 0.19 0.94 0.48 0.10 0.21 7.16 1.90 0.20 24.58 0.56 0.69 
29 0.07 1.52 0.60 0.14 0.37 -9.76 1.14 0.09 6.11 2.06 0.85 

30 0.01 1.31 0.57 0.02 0.04 4.79 1.37 0.00 1.31 1.11 0.89 

31 0.15 2.35 0.70 0.11 0.39 16.41 0.92 0.27 3.17 0.78 0.63 
32 0.19 2.55 0.72 0.06 0.28 0.84 1.16 0.19 13.92 0.45 0.80 

33 0.01 3.34 0.77 0.04 0.14 0.50 0.72 0.02 1.92 3.08 0.96 

34 0.03 3.62 0.78 0.02 0.10 31.06 0.96 0.07 1.82 0.90 0.92 
35 0.43 0.47 0.32 0.32 0.51 1.14 1.71 0.46 31.89 0.81 0.47 

36 0.05 7.46 0.88 0.06 0.57 1.71 1.05 0.11 4.65 1.45 0.73 

37 -0.04 1.58 0.61 -0.01 -0.04 -2.89 1.82 0.02 0.51 0.38 0.85 
38 0.27 0.88 0.47 0.39 0.94 1.39 1.61 0.26 16.51 1.71 0.69 

39 0.03 5.99 0.86 0.02 0.12 -2.51 0.53 0.12 1.30 0.92 0.81 

40 0.03 1.95 0.66 0.04 0.12 2.05 0.91 0.07 2.12 1.37 0.91 
41 0.04 3.36 0.77 0.06 0.23 -1.22 0.94 0.06 2.42 1.41 0.91 

    The severe interrelation of criteria makes most MADM techniques incapable of reaching proper 

discriminative rankings. Therefore, the FA method is suggested to be used to eliminate the existing interrelation 

of criteria. 

   As is observable in the decision matrix, 11 impressing criteria are taken into consideration to evaluate the 

financial situation of the companies. Profit margin (I/S), as the first index, is the ratio of net income to net sales 

in a financial year. It indicates the profitability generated from revenue and hence is an important measure of 

operating performance. It also provides clues to a company’s pricing, cost structure, and production efficiency. 

Debt ratio (D/A) is another index obtained by dividing total liabilities by total assets. This index is a cost 

criterion and compares total debt to total assets. The well-defined index of debt/equity ratio (D/E) is considered 

the next criterion having a cost nature. The index, calculated by dividing total liabilities by stockholders’ equity, 

is a significant measure of solvency since a high degree of debt in the capital structure may make it difficult for 

the company to meet interest charges and principal payments at maturity. Thus, the smallest values are 
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considered as best for these two criteria. The succeeding criterion, return on assets (ROA), is defined by the 

ratio of net income to average total assets and indicates the efficiency with which management has used its 

available resources to generate income. Also, return on equity (ROE) is the ratio of earnings available to 

common stockholders to the average stockholders’ equity and measures the rate of return earned on the common 

stockholders’ investment. Operating leverage (OL) is the ratio of the percentage change in operating earnings 

(or EBIT) to the percentage change in sales and is a measure of operating risk which arises from fixed operating 

costs. A simple indication of OL is the effect that a change in sales has on earnings. The current ratio (CR), 

applied as the next criterion, is equal to current assets divided by current liabilities. This ratio, which is subject 

to seasonal fluctuations, is used to measure the ability of an enterprise to meet its current liabilities out of current 

assets. The operating earnings to sale ratio (OE/S) are considered a financial index, gained by dividing operating 

profit by net sales. The ratio of earnings before interest and taxes (EBIT) to interest expense leads to the interest 

coverage ratio (ICR), as another benefit criterion. It is a safety margin indicator in the sense that it shows how 

much of a decline in earnings a company can absorb. Total asset turnover ratio (ATR) stands for a financial 

index, obtained by calculating the ratio of net sales to the average total assets. This index helps evaluate a 

company’s ability to use its asset base efficiently to generate revenue. Finally, the cost of goods sold to sale 

ratio (CGS/S), as the last index, is a cost-natured criterion with the smallest values considered as best calculated 

by dividing the cost of goods sold by net sales (Neveu 1989; Shim and Siegel 2007). 

   As it is obvious, the indices dealing with debt are considered cost criteria and thus must be treated based on 

the 2nd step of the algorithm. Moreover, the indices dealing directly with profit are intended to gain doubled 

importance in this research. The criteria weights resulting from this intent are presented in Table 1. 

   After calculating the covariance matrix of the standardized and weighted data according to steps 3, 4, and 5, 

the corresponding eigenvalues and eigenvectors of the covariance matrix are obtained based on step 6. Applying 

steps 7 to 10 results in the rotated factor loadings using Varimax rotation with Kaiser’s normalization method. 

According to the 8th step, the first m=5 principal components with larger eigenvalues and an aggregate weight 

value reaching 0.90 should be chosen. Thus, 5 factors are extracted. By selecting the first criterion in the 11th 

step, the 1st, 2nd, and 3rd eigenvectors are to be multiplied by –1, so that the criterion is satisfied. Thereafter, the 

algorithm is repeated once more from step 6 to the end. This results in the correlation matrix between the criteria 

and adjusted rotated factors. Considering matrix G consisting of covariance coefficients, the recent matrix is 

calculated simply by dividing the element (i,j) (i=1, …,11, j=1, …, 5) of G by multiplication of the standard 

deviations of ith standardized and weighted criteria and jth factor, in which the second standard deviation value 

is always equal to 1. Due to the rather small number of alternatives, correlation coefficients greater than 0.65 

are considered meaningful relations. In consistency with the result of rotation, this shows that each criterion is 

correlated severely by only one of the factors. According to step 12, the adjusted and rotated factor scores 

extracted from the financial indices, are estimated, and the importance of the recent factors is acquired using 

step 13. Now, the factors could be applied practically to rank the companies using MADM methods in a reliable 

context and without interrelation. 

   Now, to investigate the other adjusting approach applied by Zhu (1998), which is illustrated in section 3.2, 

various positive or negative signs are assigned to the weights of principal components and also factors obtained 

respectively by Eq. (4) and (12). Thus, 32 different permutations of weights are generated in each case. 

Therefore, according to Eq. (16) and (17), 32 sets of aggregated weights are generated for the financial indices 

in each method of PCA and FA. Nevertheless, for both PCA and FA methods, there is not any case among these 

sets with all the aggregated weights having nonnegative values. So, the adjusting criterion is not satisfied in any 

case, and that’s why the problem of ranking remains unsolved. Finally, as was claimed before, it is concluded 

that this criterion ought not to be applied as a general rule. 

   Next, considering the special specifications of the ELECTRE method, it is applied to specify the preference 

of companies with respect to each other. Its first idea concerning concordance, discordance, and outranking 

concepts originates from real-world applications. Since any direct summation of the scores of each alternative 

upon the criteria is not adopted by ELECTRE, it has a particular ability in dealing with cases carrying severe 

interrelations. Thus, the initial decision matrix, the final unadjusted one, and also the adjusted one are explored 



58    Journal of Applied Intelligent Systems & Information Sciences  

 

 

 

by the ELECTRE I method, and three preference matrices are summarized in Table 2. The estimated factor 

scores without performing the adjustments of step 11 are used to establish the final unadjusted decision matrix. 

Also, the final adjusted decision matrix is constructed considering the proposed approach. 

Table 2. Number of alternatives being preferred and preferred to by each alternative considering three decision matrices 

based on the results of ELECTRE I method for Iranian listed companies 

 Initial data  Unadjusted factors  Adjusted factors 

 
Being 

preferred 
Preference 

Preference 

Indicator 

 Being 

preferred 
Preference 

Preference 

Indicator 

 Being 

preferred 
Preference 

Preference 

Indicator 

1 2 15 13  18 6 -12  7 15 8 

2 28 1 -27 
 25 2 -23  12 8 -4 

3 5 25 20  31 1 -30  4 30 26 

4 15 16 1 
 10 20 10  11 14 3 

5 19 9 -10  20 10 -10  17 8 -9 

6 16 7 -9 
 12 16 4  15 11 -4 

7 0 33 33  31 0 -31  0 31 31 

8 30 2 -28  1 31 30  31 2 -29 

9 19 9 -10 
 16 12 -4  16 9 -7 

10 18 11 -7  15 20 5  13 10 -3 

11 15 14 -1 
 2 28 26  9 11 2 

12 4 29 25  28 4 -24  3 32 29 

13 31 1 -30 
 3 20 17  34 1 -33 

14 1 28 27  12 7 -5  7 16 9 

15 0 33 33 
 26 1 -25  0 38 38 

16 36 1 -35  9 23 14  31 2 -29 

17 10 21 11 
 19 11 -8  10 22 12 

18 5 24 19  21 5 -16  7 23 16 

19 23 0 -23 
 1 20 19  19 1 -18 

20 39 0 -39  1 27 26  38 0 -38 

21 14 11 -3  6 23 17  14 11 -3 

22 22 5 -17  2 27 25  24 4 -20 

23 6 25 19 
 17 8 -9  5 26 21 

24 28 3 -25 
 4 21 17  31 2 -29 

25 7 24 17  25 4 -21  6 23 17 

26 13 20 7 
 18 11 -7  11 14 3 

27 0 32 32  39 0 -39  0 22 22 

28 6 23 17 
 10 21 11  8 11 3 

29 17 5 -12  5 29 24  15 7 -8 

30 24 6 -18 
 1 35 34  22 2 -20 

31 1 27 26  30 2 -28  2 27 25 

32 12 16 4 
 19 9 -10  12 15 3 

33 11 9 -2  0 29 29  24 4 -20 

34 1 9 8  16 7 -9  7 12 5 

35 0 32 32  31 1 -30  1 36 35 

36 12 16 4 
 19 4 -15  8 15 7 

37 30 2 -28  0 39 39  35 0 -35 

38 1 32 31 
 21 3 -18  1 35 34 

39 28 3 -25  18 11 -7  20 8 -12 

40 21 7 -14 
 6 26 20  22 7 -15 

41 22 6 -16 
 11 25 14  23 10 -13 

 

   As a result, obtained from the preference matrix of the initial data show the companies of number 7, 15, 27, 

and 35 are not preferred by any of the alternatives and are preferred by most of them. This result is almost held 
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considering the adjusted factors. However, the preference matrix of the unadjusted factors demonstrates a quite 

contradictory result for the mentioned alternatives, i.e., they are not preferred to any, or only preferred to one of 

the alternatives, whereas numerous numbers of the alternatives are preferred to them. Thus, these companies 

are considered as best by the initial data and adjusted factors whereas they have been classified as worst 

according to the unadjusted approach. This indicates that the unadjusted approach is incapable of making 

decision matrices with similar specifications to the initial data. 

   Next, it is intended to apply the VIKOR method to obtain a more explicit comparison of the decision matrices. 

The VIKOR method was developed as a MADM method to solve discrete decision problems with non-

commensurable and conflicting criteria (Opricovic and Tzeng, 2004). It introduces the multi-criteria synthetic 

utility value based on the particular measure of “closeness” to the “ideal” solution (Opricovic, 1998). The multi-

criteria measure for compromise ranking is developed from the Lp-metric used as an aggregating function in a 

compromise programming method. 

   Thus, three sets of synthetic utility values are obtained using the VIKOR method (with parameter 0.5) upon 

the initial decision matrix, the unadjusted factors, and also the adjusted factors. Considering the VIKOR 

synthetic utility values varying in the range between 0 to 1, and regarding their cost nature of them (smaller the 

better), three sets of comparable scores are acquired after subtracting the synthetic utility values from 1 and 

normally standardizing them. The result is demonstrated in Fig. 2. As it is clear, and in conformity with the 

ELECTRE results, the scores of the unadjusted decision matrix are in apparent contradiction with the other ones 

in most cases. According to the diagram, despite similar scores of the initial data and the adjusted factors, the 

second one can discriminate the alternatives more distinctly, and this is a quite favorable result in multiple 

interrelated criteria decision-making. 

 

Fig. 2. Discrimination of 41 listed companies based on different decision matrices applying the VIKOR method 

To investigate the validity of the proposed adjustments in PCA or FA, it is necessary to compare the evaluation 

results before and after applying adjustments with the evaluation results of the initial dataset. Since the proposed 

method serves to reduce or eliminate the underestimations or overestimations, it is expected that the proper 

after-results comply with the before-results in an approximation. The Euclidean distance is used here to compare 
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between results. As is observable in Table 3, the Euclidean distance of the results of the initial dataset from the 

adjusted dataset is significantly less than the unadjusted one. As was expected, this result is true for the utility 

values provided by both ELECTRE and VIKOR methods. This indicates the necessity of adjustments in the 

proposed evaluation process. It is noted that the final utility value (the preference indicator) is computed in 

ELECTRE by subtracting the ‘being preferred’ measure from ‘preference’ in Table 2. 

Table 3. The Euclidean distance between utility values of different datasets 

 Initial utility values - ELECTRE Initial utility values - VIKOR 

Unadjusted utility values 253 3.46 

Adjusted utility values 45 1.88 

 

To validate the capability of the proposed method in its core functionality, i.e., in reducing or eliminating the 

underestimations or overestimations, descriptive statistics of VIKOR results are clarified. According to Table 

4, the mean utility value is reduced in the adjusted dataset compared to the initial dataset, as was expected. This 

is considered the evidence of removing overestimations made by applying the addition operation in VIKOR 

computations. In the meantime, the variance of utility values is considerably increased for the adjusted dataset 

compared to the initial dataset. This indicates that the distinguishing power of the proposed process is enhanced 

as a result of removing or reducing underestimations and overestimations. Thus, the proposed approach is 

applicable to complement VIKOR or other MADM techniques such as SAW, AHP, and TOPSIS. ELECTRE is 

not considered here since it is not regarded as a technique significantly exposed to underestimation or 

overestimation effects. This is because alternatives’ preference is specified in ELECTRE without aggregating 

‘components of decision matrix’ (criteria-based evaluations of alternatives). 

Table 4. Descriptive statistics of VIKOR utility values 

 Mean Variance 

Initial utility values 0.757 0.026 

Adjusted utility values 0.507 0.059 

 

   In conclusion, the unrealistic results acquired by the unadjusted FA, and the conforming results obtained from 

the initial criteria and the uncorrelated factors, implying that the proposed adjustments are reasonable and 

essential for the algorithm. 

4.2. Adjustments in practice:  Investigating the validity 

   Here, 5 sets of information drawn out as the adjusted factors in the previous section, are taken into 

consideration as the inputs of the proposed algorithm. All of these factors are assumed to have equal importance 

and thus there is no need to make this decision matrix weighted. Each set compares 41 different alternatives 

from the viewpoint of a common factor and has a variance of 1 and a mean value of zero. Also, the correlation 

coefficient for each pair of sets is equal to zero and thus there is not any interrelation between the criteria. 

Therefore, the covariance and correlation matrices of this decision matrix are equal to the identity matrix. So, 

the same decision matrix is expected to be acquired through the implementation of the FA method one more 

time. Note that there is no need to implement steps 1 through 4 of the algorithms here. Thus, the unadjusted new 

factor loadings are calculated. The structure of the loadings makes the rotation unnecessary and unreasonable. 

The loading matrix may be considered as matrix G in the calculation process of new factors. Thus, a decision 

matrix would be obtained in which the 2nd, 3rd, and 5th columns become additively inversed (multiplied by –1) 

concerning the former dataset including adjusted and rotated factor scores. But this is quite an unreasonable 

result because it is expected that the same decision matrix is acquired through FA in the absence of interrelation. 

However, implementing one of the adjustments of step 11 makes the corresponding eigenvectors additively 

inversed, and this modification results in the desired output. 

 

5. CONCLUSIONS AND FURTHER RESEARCH 
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    The problem of ranking some facing alternatives was discussed through this research considering numerous 

severely interrelated criteria in the framework of MCDM. The research intended to describe the disadvantages 

of routine decision-making methods in the absence of criteria independence and attempted to propose an 

integrated step-by-step algorithm to solve the problem by preparing a dependable solution. Prerequisite subjects 

were discussed, and necessary justifications were reasoned through the text. Eventually, the real-world case 

study of discriminating against some listed companies of the Tehran stock exchange was applied considering 

numerous financial indices to investigate the results. Since all of the indices were extracted from common 

information describing the financial situation of companies, it was expected to deal with a practical situation of 

the criteria interrelation problem. This issue was tested through two statistical tests and the expected conclusions 

were obtained. Thus, two sets of data were extracted from the initial one using the algorithm in the absence and 

presence of the proposed adjustments of the research.  Against other MADM methods, particular specifications 

of the ELECTRE method such as the avoidance of direct summation between the interrelated criteria scores was 

a proper reason to apply it as a performance evaluator of the research approach. The evaluations based on the 

ELECTRE method and displayed distinctly by the VIKOR method verified the proper adjustments of the 

proposed approach. Finally, the adjustments were confirmed more explicitly by a second example. 

   As a suggestion for further research, it is useful to investigate the extension of the method in non-deterministic 

contexts which can prepare a more practical and potent situation for decision-making in the real world. Also, 

considering the limitations of the PCA method as an initial solution, it is worthwhile to apply more advanced 

FA approaches such as maximum likelihood, to produce more precise results out of data reduction. Comparison 

of the research approach with other combinations of FA and discrimination approaches such as the fuzzy integral 

method could also be a good idea to investigate the performance of the proposed method. Since excluding 

nonessential data attributes is impressive in boosting machine learning algorithms in the presence of high data 

dimensionality, it would be beneficial to conduct studies on the influence of adjusted factor analysis in this 

regard. This will help in uncovering patterns for the digitization of sectors such as healthcare, manufacturing, 

marketing, IoT processing, and recommendation systems. 
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